ZENG Fanhui, HU Dagan, ZHANG Yu, et al. Research on data-driven intelligent optimization of fracturing treatment parameters for shale oil horizontal wells [J]. Petroleum Drilling Techniques,2023, 51(5):78-87. DOI: 10.11911/syztjs.2023087
Citation: ZENG Fanhui, HU Dagan, ZHANG Yu, et al. Research on data-driven intelligent optimization of fracturing treatment parameters for shale oil horizontal wells [J]. Petroleum Drilling Techniques,2023, 51(5):78-87. DOI: 10.11911/syztjs.2023087

Research on Data-Driven Intelligent Optimization of Fracturing Treatment Parameters for Shale Oil Horizontal Wells

More Information
  • Received Date: May 16, 2023
  • Revised Date: August 06, 2023
  • Available Online: August 24, 2023
  • A data-driven intelligent optimization method for fracturing treatment parameters was proposed to address the issues of insufficient pertinence and incomplete process design in digital fracturing treatment parameters. With 32 shale oil wells in the CD block as the research object, principal component analysis was used to reduce the 15 production-influencing factor dimensions representing geological attributes, engineering quality, and construction parameters of the reservoir. A Gaussian membership function and entropy weight method were introduced for a fuzzy comprehensive evaluation of reservoir fracturing heterogeneity. Combined with support vector regression and particle swarm optimization algorithms, the perforation location, segment length, cluster spacing, fracturing fluid intensity, sanding intensity, and discharge capacity were recommended with the highest production as the goal. The research results indicated that permeability, porosity, free hydrocarbon content by pyrolysis, fracturing fluid intensity, and sanding intensity were the main control factors for the production of the target block. All eight clusters of the first fracturing section of the application well have successfully initiated fractures during treatment with optimized parameters, with a half-length of 59.50–154.80 m and a production prediction accuracy of 94.86%. The method proposed can achieve effective reservoir quality evaluation, production prediction, and rapid optimization of treatment parameters that match reservoir geological conditions, promoting efficient shale oil development in unconventional reservoirs.

  • [1]
    LU Chunhua, JIANG Hanqiao, QU Shiyuan, et al. Hydraulic fracturing design for shale oils based on sweet spot mapping: a case study of the Jimusar Formation in China[J]. Journal of Petroleum Science and Engineering, 2022, 214: 110568. doi: 10.1016/j.petrol.2022.110568
    [2]
    YANG Ruiyue, QIN Xiaozhou, LIU Wei, et al. A physics-constrained data-driven workflow for predicting coalbed methane well production using artificial neural network[J]. SPE Journal, 2022, 27(3): 1531–1552. doi: 10.2118/205903-PA
    [3]
    张世昆,陈作. 人工智能在压裂技术中的应用现状及前景展望[J]. 石油钻探技术,2023,51(1):69–77. doi: 10.11911/syztjs.2022115

    ZHANG Shikun, CHEN Zuo. Status and prospect of artificial intelligence application in fracturing technology[J]. Petroleum Drilling Techniques, 2023, 51(1): 69–77. doi: 10.11911/syztjs.2022115
    [4]
    盛茂,李根生,田守嶒,等. 人工智能在油气压裂增产中的研究现状与展望[J]. 钻采工艺,2022,45(4):1–8.

    SHENG Mao, LI Gensheng, TIAN Shouceng, et al. Research status and prospect of artificial intelligence in reservoir fracturing stimulation[J]. Drilling & Production Technology, 2022, 45(4): 1–8.
    [5]
    李宾元. 模糊决策在压裂酸化中选井选层的应用[J]. 石油钻采工艺,1989,11(2):75–87. doi: 10.13639/j.odpt.1989.02.017

    LI Binyuan. Use of fuzzy decision in selection of well and zones for fracturing and acidzing[J]. Oil Drilling & Production Technology, 1989, 11(2): 75–87. doi: 10.13639/j.odpt.1989.02.017
    [6]
    ZOVEIDAVIANPOOR M, GHARIBI A. Applications of type-2 fuzzy logic system: Handling the uncertainty associated with candidate-well selection for hydraulic fracturing[J]. Neural Computing and Applications, 2016, 27(7): 1831–1851. doi: 10.1007/s00521-015-1977-x
    [7]
    DAVARPANAH A, SHIRMOHAMMADI R, MIRSHEKARI B, et al. Analysis of hydraulic fracturing techniques: Hybrid fuzzy approaches[J]. Arabian Journal of Geosciences, 2019, 12(13): 402. doi: 10.1007/s12517-019-4567-x
    [8]
    GOU Bo, WANG Chuan, YU Ting, et al. Fuzzy logic and grey clustering analysis hybrid intelligence model applied to candidate-well selection for hydraulic fracturing in hydrocarbon reservoir[J]. Arabian Journal of Geosciences, 2020, 13(19): 975. doi: 10.1007/s12517-020-05970-y
    [9]
    VERMA A K, SINGH T N. A neuro-fuzzy approach for prediction of longitudinal wave velocity[J]. Neural Computing and Applications, 2013, 22(7): 1685–1693.
    [10]
    RIOS E H, de VASCONCELLOS AZEREDO R B, MOSS A K, et al. Estimating the permeability of rocks by principal component regressions of NMR and MICP data[J]. Petrophysics, 2022, 63(3): 442–453.
    [11]
    宋宣毅,刘月田,马晶,等. 基于灰狼算法优化的支持向量机产能预测[J]. 岩性油气藏,2020,32(2):134–140.

    SONG Xuanyi, LIU Yuetian, MA Jing, et al. Productivity forecast based on support vector machine optimized by grey wolf optimizer[J]. Lithologic Reservoirs, 2020, 32(2): 134–140.
    [12]
    宋丽阳,王纪伟,刘长印. 基于BP-GA算法的水平井智能压裂设计方法[J]. 断块油气田,2022,29(3):417–421.

    SONG Liyang, WANG Jiwei, LIU Changyin. BP-GA algorithm assisted intelligent horizontal well fracturing design[J]. Fault-Block Oil & Gas Field, 2022, 29(3): 417–421.
    [13]
    LU Chunhua, JIANG Hanqiao, YANG Jinlong, et al. Shale oil production prediction and fracturing optimization based on machine learning[J]. Journal of Petroleum Science and Engineering, 2022, 217: 110900. doi: 10.1016/j.petrol.2022.110900
    [14]
    DONG Zhenzhen, WU Lei, WANG Linjun, et al. Optimization of fracturing parameters with machine-learning and evolutionary algorithm methods[J]. Energies, 2022, 15(16): 6063. doi: 10.3390/en15166063
    [15]
    姚东华,周立宏,王文革,等. 页岩油综合甜点测井评价:以沧东凹陷孔店组二段为例[J]. 石油学报,2022,43(7):912–924.

    YAO Donghua, ZHOU Lihong, WANG Wenge, et al. Logging evaluation of composite sweet spots for shale oil: a case study of Member 2 of Kongdian Formation in Cangdong Sag[J]. Acta Petrolei Sinica, 2022, 43(7): 912–924.
    [16]
    孙龙德,赵文智,刘合,等. 页岩油 “甜点” 概念及其应用讨论[J]. 石油学报,2023,44(1):1–13. doi: 10.1038/s41401-022-00938-y

    SUN Longde, ZHAO Wenzhi, LIU He, et al. Concept and application of “sweet spot” in shale oil[J]. Acta Petrolei Sinica, 2023, 44(1): 1–13. doi: 10.1038/s41401-022-00938-y
    [17]
    ZHAO Gang, DING Wenlong, TIAN Jing, et al. Spearman rank correlations analysis of the elemental, mineral concentrations, and mechanical parameters of the Lower Cambrian Niutitang shale: a case study in the Fenggang Block, Northeast Guizhou Province, South China[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part C): 109550.
    [18]
    JU Yang, WU Guangjie, WANG Yongliang, et al. 3D numerical model for hydraulic fracture propagation in tight ductile reservoirs, considering multiple influencing factors via the entropy weight method[J]. SPE Journal, 2021, 26(5): 2685–2702. doi: 10.2118/205385-PA
    [19]
    KHANAL A, KHOSHGHADAM M, LEE W J, et al. New forecasting method for liquid rich shale gas condensate reservoirs with data driven approach using principal component analysis[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 621–637. doi: 10.1016/j.jngse.2017.01.014
    [20]
    DARABI H, KAVOUSI A, MORAVEJI M, et al. 3D fracture modeling in Parsi oil field using artificial intelligence tools[J]. Journal of Petroleum Science and Engineering, 2010, 71(1/2): 67–76.
    [21]
    YIN Hailong, LIU Changhua, WU Wei, et al. An integrated framework for criticality evaluation of oil & gas pipelines based on fuzzy logic inference and machine learning[J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104264. doi: 10.1016/j.jngse.2021.104264
    [22]
    ZENG Fanhui, GUO Jianchun, LONG Chuan. A hybrid model of fuzzy logic and grey relation analysis to evaluate tight gas formation quality comprehensively[J]. Journal of Grey System, 2015, 27(3): 87–98.
    [23]
    CAI Wu, DURUCAN S, SHI Jiquan, et al. Development of fractal-fuzzy evaluation methodology and its application for seismic hazards assessment using microseismic monitoring in coal mining[R]. ARMA-2019-1570, 2019.
    [24]
    HU Jun, XU Bin, CHEN Zheng, et al. Hazard and risk assessment for hydraulic fracturing induced seismicity based on the entropy-fuzzy-AHP method in Southern Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2021, 90: 103908. doi: 10.1016/j.jngse.2021.103908
    [25]
    ZHENG Dongyu, WU Sixuan, HOU Mingcai. Fully connected deep network: an improved method to predict TOC of shale reservoirs from well logs[J]. Marine and Petroleum Geology, 2021, 132: 105205. doi: 10.1016/j.marpetgeo.2021.105205
    [26]
    TAN Maojin, SONG Xiaodong, YANG Xuan, et al. Support-vector-regression machine technology for total organic carbon content prediction from wireline logs in organic shale: a comparative study[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 792–802. doi: 10.1016/j.jngse.2015.07.008
    [27]
    陈敬武,朱建伟,孙平昌. 采用支持向量回归从测井曲线定量计算油页岩含油率[J]. 地质与资源,2017,26(2):157–160. doi: 10.13686/j.cnki.dzyzy.2017.02.009

    CHEN Jingwu, ZHU Jianwei, SUN Pingchang. Quantifying oil content of oil shale from well logs using support vector regression[J]. Geology and Resources, 2017, 26(2): 157–160. doi: 10.13686/j.cnki.dzyzy.2017.02.009
    [28]
    ALPAK F O. Simultaneous optimization of well count and placement: algorithm, validation, and field testing[J]. SPE Journal, 2023, 28(1): 147–172. doi: 10.2118/210588-PA
    [29]
    HAN Xiaodong, ZHONG Liguo, WANG Xiang, et al. Well placement and control optimization of horizontal steamflooding wells using derivative-free algorithms[J]. SPE Reservoir Evaluation & Engineering, 2021, 24(1): 174–193.
    [30]
    王爱国,张胜传,余洲,等. 稳定电场压裂裂缝监测技术[J]. 石油学报,2016,37(增刊2):87–92. doi: 10.7623/syxb2016S2010

    WANG Aiguo, ZHANG Shengchuan, YU Zhou, et al. Fracturing fissure monitoring technology in stable electric field[J]. Acta Petrolei Sinica, 2016, 37(supplement2): 87–92. doi: 10.7623/syxb2016S2010
  • Related Articles

    [1]GUO Jianchun, REN Wenxi, ZENG Fanhui, LUO Yang, LI Yulin, DU Xiaoyang. Unconventional Oil and Gas Well Fracturing Parameter Intelligent Optimization: Research Progress and Future Development Prospects[J]. Petroleum Drilling Techniques, 2023, 51(5): 1-7. DOI: 10.11911/syztjs.2023097
    [2]WU Zhiying, HU Yafei, JIANG Tingxue, ZHANG Baoping, YAO Yiming, DONG Ning. Study on Propagation and Diversion Characteristics of Hydraulic Fractures in Vuggy Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(4): 90-96. DOI: 10.11911/syztjs.2022084
    [3]ZHOU Bocheng, XIONG Wei, LAI Jianlin, FANG Qilong. Low-Cost Fracturing Technology in Normal-Pressure Shale Gas Reservoirs in Wulong Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 80-85. DOI: 10.11911/syztjs.2022011
    [4]JIANG Tingxue, ZUO Luo, HUANG Jing. Development Trends and Prospects of Less-Water Hydraulic Fracturing Technology[J]. Petroleum Drilling Techniques, 2020, 48(5): 1-8. DOI: 10.11911/syztjs.2020119
    [5]FU Xuan, LI Gensheng, HUANG Zhongwei, CHI Huanpeng, LU Peiqing. Laboratory Testing and Productivity Numerical Simulation for Fracturing CBM Radial Horizontal Wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 99-105. DOI: 10.11911/syztjs.201602017
    [6]WANG Haitao, JIANG Tingxue, BIAN Xiaobing, DUAN Hua. Optimization and Field Application of Hydraulic Fracturing Techniques in Deep Shale Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(2): 76-81. DOI: 10.11911/syztjs.201602013
    [7]Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015
    [8]Li Yang, Deng Jingen, Yu Baohua, Liu Wei, Chen Jianguo. Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment[J]. Petroleum Drilling Techniques, 2014, 42(6): 80-86. DOI: 10.11911/syztjs.201406016
    [9]Peng Chunyao. Mechanism of Interaction between Hydraulic Fractures and Weak Plane in Layered Shale[J]. Petroleum Drilling Techniques, 2014, 42(4): 32-36. DOI: 10.3969/j.issn.1001-0890.2014.04.006
    [10]Zhang Xu, Jiang Tingxue, Jia Changgui, Zhang Baoping, Zhou Jian. Physical Simulation of Hydraulic Fracturing of Shale Gas Reservoir[J]. Petroleum Drilling Techniques, 2013, 41(2): 70-74. DOI: 10.3969/j.issn.1001-0890.2013.02.014
  • Cited by

    Periodical cited type(10)

    1. 章威,王美楠,阳晓燕,张吉磊,胡俊瑜. 渤海复杂底水油藏开发调整策略制定及应用. 石油化工应用. 2023(10): 20-25 .
    2. 孙恩慧,郭敬民,赵秀娟,张东. 底水油藏高含水期水平井转注后对采收率影响研究. 承德石油高等专科学校学报. 2022(01): 24-26+31 .
    3. 于萌,徐国瑞,李翔,张东,盛磊,刘文辉. 海上油田低温酚醛凝胶的改进及应用. 化工科技. 2022(06): 68-72 .
    4. 胡松,王敏,田飞,赵磊. 基于水平井电阻率测井的井间夹层反演方法及应用. 石油钻探技术. 2021(03): 151-158 . 本站查看
    5. 于萌,铁磊磊,李翔,刘文辉. 海上油田剖面调整用分散共聚物颗粒体系的研制. 石油钻探技术. 2020(02): 118-122 . 本站查看
    6. 章威,龙明,周焱斌,张吉磊,欧阳雨薇. 无夹层底水油藏注水开发图版建立与应用. 特种油气藏. 2020(02): 115-119 .
    7. 王倩,高祥录,罗池辉,孟祥兵,甘衫衫,刘佳. 超稠油Ⅲ类油藏夹层发育模式及SAGD提高采收率技术. 特种油气藏. 2020(04): 105-112 .
    8. 王有慧,鲍君刚,王呈呈,高益桁. 高含水砂岩老油田剩余油综合分析及开发实践. 石油化工高等学校学报. 2020(05): 86-91 .
    9. 张吉磊,罗宪波,张运来,何逸凡,周焱斌. 提高稠油底水油藏转注井注水效率研究. 岩性油气藏. 2019(04): 141-148 .
    10. 王超,杨宏楠,乐平,贾冰懿,苏波. 隔夹层成因及其对剩余油分布的影响——以哈得油田东河砂岩油藏为例. 新疆石油天然气. 2019(04): 15-20+1-2 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (383) PDF downloads (119) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return