HU Song, WANG Min, TIAN Fei, ZHAO Lei. Interlayer Inversion Method and Its Application Based on Horizontal Well Resistivity Logging[J]. Petroleum Drilling Techniques, 2021, 49(3): 151-158. DOI: 10.11911/syztjs.2021031
Citation: HU Song, WANG Min, TIAN Fei, ZHAO Lei. Interlayer Inversion Method and Its Application Based on Horizontal Well Resistivity Logging[J]. Petroleum Drilling Techniques, 2021, 49(3): 151-158. DOI: 10.11911/syztjs.2021031

Interlayer Inversion Method and Its Application Based on Horizontal Well Resistivity Logging

More Information
  • Received Date: October 11, 2020
  • Revised Date: January 26, 2021
  • Available Online: February 28, 2021
  • In order to study the spatial distribution characteristics of interlayers and reveal the distribution pattern of remaining oil, interlayers between wells were predicted and identified. Firstly, the types of interlayers were determined from core analysis, and the identification criteria was established along with logging data.Then, an inversion algorithm was designed on the basis of electric logging for the distribution of interlayers beyond horizontal wellbore. The results demonstrate that the intersection of relative density or relative value of neutron with relative value of gamma can identify two types of interlayers in the target area with absolute errors of 0.018 m and 0.017 m in the inversed thickness of calcareous interlayers and muddy interlayers, respectively. The calcareous interlayers are more developed, with wide distribution and varied change in thickness, while the muddy interlayers are fewer, with a distribution in the northeast orientation. This study, which can provide a reference in studying the distribution and tapping potential of remaining oil, proves that the prediction of interlayer distribution between wells can be more accurate after the interlayer distribution beyond the wellbore is inversed on the basis of horizontal-well resistivity and the inter-well distribution of interlayers determined with the joint control of vertical wells.
  • [1]
    孙恩慧,郭敬民,谭捷,等. 含隔夹层底水油藏的注水开发影响因素分析[J]. 重庆科技学院学报(自然科学版),2020,22(4):30–34.

    SUN Enhui, GUO Jingmin, TAN Jie, et al. Analysis of factors influencing water-flooding development of bottom water reservoir with interlayer[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2020, 22(4): 30–34.
    [2]
    谷建伟,任燕龙,王依科,等. 基于机器学习的平面剩余油分布预测方法[J]. 中国石油大学学报(自然科学版),2020,44(4):39–46.

    GU Jianwei, REN Yanlong, WANG Yike, et al. Prediction methods of remaining oil plane distribution based on machine learning[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(4): 39–46.
    [3]
    杨敏,李小波,谭涛,等. 古暗河油藏剩余油分布规律及挖潜对策研究:以塔河油田TK440井区为例[J]. 油气藏评价与开发,2020,10(2):43–48.

    YANG Min, LI Xiaobo, TAN Tao, et al. Remaining oil distribution and potential tapping measures for palaeo-subterranean river reservoirs: a case study of TK440 well area in Tahe Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(2): 43–48.
    [4]
    张吉磊,龙明,何逸凡,等. 渤海Q油田隔夹层发育底水稠油油藏精细注采技术[J]. 石油钻探技术,2018,46(2):75–80.

    ZHANG Jilei, LONG Ming, HE Yifan, et al. Fine injection-production technology for bottom-water viscous oil reservoirs with interlayers in Bohai Q Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(2): 75–80.
    [5]
    郭春涛,倪玲梅,陈继福. 塔中地区含砾砂岩段隔夹层特征及分布规律[J]. 科学技术与工程,2020,20(7):2625–2633. doi: 10.3969/j.issn.1671-1815.2020.07.015

    GUO Chuntao, NI Lingmei, CHEN Jifu. Characteristics and distribution of interlayer in gravel-bearing sandstone segment in Tazhong Area[J]. Science Technology and Engineering, 2020, 20(7): 2625–2633. doi: 10.3969/j.issn.1671-1815.2020.07.015
    [6]
    巩强,李胜利,刘圣,等. 远源水下扇内部夹层识别与展布规律研究[J]. 特种油气藏,2020,27(1):55–61.

    GONG Qiang, LI Shengli, LIU Sheng, et al. Identification and distribution of internal interlayers in distal uUnderwater fan[J]. Special Oil & Gas Reservoirs, 2020, 27(1): 55–61.
    [7]
    王超,杨宏楠,乐平,等. 隔夹层成因及其对剩余油分布的影响:以哈得油田东河砂岩油藏为例[J]. 新疆石油天然气,2019,15(4):15–20. doi: 10.3969/j.issn.1673-2677.2019.04.004

    WANG Chao, YANG Hongnan, LE Ping, et al. Rigin of interbeds and the influence on distribution of remaining oil: taking command of the Hudson Donghe sandstone oilfield[J]. Xinjiang Oil & Gas, 2019, 15(4): 15–20. doi: 10.3969/j.issn.1673-2677.2019.04.004
    [8]
    朱建敏,达丽亚,高红立,等. 海上稀井条件下砂质辫状河储层隔夹层识别:以渤海LD2X油田为例[J]. 断块油气田,2020,27(6):739–744.

    ZHU Jianmin, DA Liya, GAO Hongli, et al. Identification of interlayers in sandy braided river reservoirs under less well conditions: a case study of LD2X Oilfield, Bohai, China[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 739–744.
    [9]
    李红英,陈善斌,杨志成,等. 巨厚油层隔夹层特征及其对剩余油分布的影响:以渤海湾盆地L油田为例[J]. 断块油气田,2018,25(6):709–714.

    LI Hongying, CHEN Shanbin, YANG Zhicheng, et al. Characteristics of interbeds in thick oil layer and its effect on remaining oil distribution: a case study of L Oilfield, Bohai Bay Basin[J]. Fault-Block Oil & Gas Field, 2018, 25(6): 709–714.
    [10]
    徐丽强,李胜利,于兴河,等. 辫状河三角洲前缘储层隔夹层表征及剩余油预测:以彩南油田彩9井区三工河组为例[J]. 东北石油大学学报,2016,40(4):10–18. doi: 10.3969/j.issn.2095-4107.2016.04.002

    XU Liqiang, LI Shengli, YU Xinghe, et al. Characterization of barrier-intercalation and remaining oil prediction in the braided river delta front reservoirs: an example from the Sangonhe Formation in Block Cai 9 of Cainan Oilfield[J]. Journal of Northeast Petroleum University, 2016, 40(4): 10–18. doi: 10.3969/j.issn.2095-4107.2016.04.002
    [11]
    夏竹,张婷婷,张胜,等. 水平井参与下的油藏隔夹层描述技术及应用[J]. 石油与天然气地质,2018,39(6):1293–1304. doi: 10.11743/ogg20180618

    XIA Zhu, ZHANG Tingting, ZHANG Sheng, et al. Technique for describing baffles and barriers in oil reservoir with horizontal well data integrated and its application[J]. Oil & Gas Geology, 2018, 39(6): 1293–1304. doi: 10.11743/ogg20180618
    [12]
    陈海莲.哈得逊油田东河砂岩井间隔夹层测井预测方法研究[D].北京: 中国石油大学(北京), 2016.

    CHEN Hailian. Research on the prediction method of interwell interlayer in Donghe sandstone of Hudson Oilfield[D]. Beijing: China University of Petroleum (Beijing), 2016.
    [13]
    贺婷婷,段太忠,赵磊,等. 塔河油田九区三叠纪下油组夹层识别及分布规律[J]. 东北石油大学学报,2017,41(6):26–35. doi: 10.3969/j.issn.2095-4107.2017.06.004

    HE Tingting, DUAN Taizhong, ZHAO Lei, et al. Interlayer identification and distribution of Triassic lower oil group in Block 9 of Tahe Oilfield[J]. Journal of Northeast Petroleum University, 2017, 41(6): 26–35. doi: 10.3969/j.issn.2095-4107.2017.06.004
    [14]
    倪小威,徐思慧,别康,等. 不同井眼偏心距下水平井阵列侧向测井围岩校正研究[J]. 石油钻探技术,2018,46(4):121–126.

    NI Xiaowei, XU Sihui, BIE Kang, et al. Surrounding rock influence correction for array laterolog responses with borehole eccentricities in horizontal wells[J]. Petroleum Drilling Techniques, 2018, 46(4): 121–126.
    [15]
    胡松,周灿灿,王昌学,等. 水平井各向异性地层双感应测井响应数值模拟[J]. 科学技术与工程,2014,14(11):10–13, 26. doi: 10.3969/j.issn.1671-1815.2014.11.003

    HU Song, ZHOU Cancan, WANG Changxue, et al. Dual induction logging numerical simulation of anisotropic formation in horizontal wells[J]. Science Technology and Engineering, 2014, 14(11): 10–13, 26. doi: 10.3969/j.issn.1671-1815.2014.11.003
    [16]
    LI Hu, WANG Lei. Fast modeling and practical inversion of laterolog-type downhole resistivity measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1): 1–8.
    [17]
    王磊,范宜仁,袁超,等. 随钻方位电磁波测井反演模型选取及适用性[J]. 石油勘探与开发,2018,45(5):914–922.

    WANG Lei, FAN Yiren, YUAN Chao, et al. Selection criteria and feasibility of the inversion model for azimuthal electromagnetic logging while drilling (LWD)[J]. Petroleum Exploration and Development, 2018, 45(5): 914–922.
    [18]
    PARDO D, TORRES-VERDIN C. Fast 1D inversion of logging-while-drilling resistivity measurements for improved estimation of formation in high-angle and horizontal wells[J]. Geophysics, 2015, 80(2): E111–E124. doi: 10.1190/geo2014-0211.1
  • Related Articles

    [1]CHI Jiangong. Drilling Technologies for Horizontal Wells of Gulong Shale Oil in Daqing[J]. Petroleum Drilling Techniques, 2023, 51(6): 12-17. DOI: 10.11911/syztjs.2023002
    [2]GE Luo. Experimental Study on the Migration and Adsorption of Gel Profile Control Agent in Medium-Permeability Sandstone in the Sabei Block of Daqing Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(3): 119-125. DOI: 10.11911/syztjs.2023063
    [3]WANG Qing, ZHANG Jiawei, SUN Minghao, JI Guodong, WANG Haige, SUN Xiaofeng. The Settlement Drag Coefficient of Gulong Shale Cuttings in Power-Law Fluids in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(2): 54-60. DOI: 10.11911/syztjs.2023006
    [4]LI Yuhai, LI Bo, LIU Changpeng, ZHENG Ruiqiang, LI Xiangyong, JI Bo. ROP Improvement Technology for Horizontal Shale Oil Wells in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5): 9-13. DOI: 10.11911/syztjs.2021085
    [5]LIU Yonggui. Optimization and Application of High Performance Water-Based Drilling Fluid for Horizontal Wells in Daqing Tight Oil Reservoir[J]. Petroleum Drilling Techniques, 2018, 46(5): 35-39. DOI: 10.11911/syztjs.2018090
    [6]YANG Zhiguang. The Latest Proposals for the Advancement and Development of Drilling and Completion Technology in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 1-10. DOI: 10.11911/syztjs.201606001
    [7]Ai Chi, Hu Chaoyang, Cui Yueming. Casing Optimization for Delaying Casing Damage in the Datum Bed of the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(6): 7-12. DOI: 10.11911/syztjs.201506002
    [8]Chen Shaoyun, Li Aihui, Li Ruiying, Wang Chu, Liu Jinwei. Horizontal Well Drilling Technology in Shallow Heavy Oil Recovery in Block Puqian 12 of the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 126-130. DOI: 10.11911/syztjs.201501022
    [9]Li Ruiying, Wang Feng, Chen Shaoyun, Liu Jinwei. ROP Improvement in Deep Formations in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 38-43. DOI: 10.11911/syztjs.201501007
    [10]Yang Juesuan. Matching Technology and Application of Gas Drilling in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2012, 40(6): 47-50. DOI: 10.3969/j.issn.1001-0890.2012.06.010
  • Cited by

    Periodical cited type(36)

    1. 张民立,袁贵德,庄伟,王威,刘武,郭超,明洪涛,杨鹏梅. 青海油田风西区块长水平段水平井钻井液技术. 钻井液与完井液. 2024(01): 31-38 .
    2. 梁旭. 大庆油田致密油钻井技术难点与关键技术优化. 石油工业技术监督. 2024(07): 51-55 .
    3. 潘永强,张坤,于兴东,王洪月,陈赓,李浩东. 松辽盆地致密油水平井提速技术研究与应用. 石油工业技术监督. 2023(12): 33-38 .
    4. 刘铭. 大庆徐深气田深层水平井钻井技术研究. 西部探矿工程. 2022(04): 110-111+115 .
    5. 李科,赵怀珍,李秀灵,周飞. 抗高温高性能水基钻井液及其在顺北801X井的应用. 钻井液与完井液. 2022(03): 279-284 .
    6. 邱春阳,王其星,杨世鑫,张翔宇. 富源201–3X超深定向井钻井液技术. 石油地质与工程. 2021(04): 98-101 .
    7. 柳伟荣,倪华峰,王学枫,石仲元,谭学斌,王清臣. 长庆油田陇东地区页岩油超长水平段水平井钻井技术. 石油钻探技术. 2020(01): 9-14 . 本站查看
    8. 陈国军. 伊拉克米桑油田裂缝性地层非标井眼水平井钻井技术. 天然气勘探与开发. 2020(02): 45-52 .
    9. 侯杰,吴迪. 高矿化度盐水钻井液体系的研究与应用. 西部探矿工程. 2020(07): 97-99 .
    10. 胡祖彪,张建卿,王清臣,吴付频,韩成福,柳伟荣. 长庆油田华H50-7井超长水平段钻井液技术. 石油钻探技术. 2020(04): 28-36 . 本站查看
    11. 彭双磊,胡贵,张国辉,刘庆岭,冯剑,陶冶. 页岩油储层钻井液技术现状及发展方向. 中国石油和化工标准与质量. 2020(17): 193-197 .
    12. 权俊生. 大庆油田深井提速及降本增效技术研究. 石油石化节能. 2019(01): 11-14+8 .
    13. 黄金锐. Y98-P3井钻井施工实践与认识. 西部探矿工程. 2019(03): 94-95 .
    14. 丁建岭. 致密油藏水平井中高性能水基钻井液的应用. 化工设计通讯. 2019(02): 233 .
    15. 苗立生. 强抑制强封堵水基钻井液在大庆致密油藏的应用. 西部探矿工程. 2019(06): 93-96 .
    16. 徐跟峰. 高性能水基钻井液技术特点及应用进展. 西部探矿工程. 2019(08): 85-86 .
    17. 关而沫. 大庆油田深井提速技术研究. 西部探矿工程. 2019(09): 24-25+27 .
    18. 王建龙,齐昌利,柳鹤,陈鹏,汪鸿,郑永锋. 沧东凹陷致密油气藏水平井钻井关键技术. 石油钻探技术. 2019(05): 11-16 . 本站查看
    19. 魏红旭. 高性能水基钻井液在XX水平井中的应用. 石化技术. 2018(03): 190 .
    20. 董明. 高性能钻井液体系在水平井钻井中的应用. 西部探矿工程. 2018(04): 39-40 .
    21. 刘政,李俊才,李轩,李茂森,胡静,范劲. CQH-M2高性能水基钻井液及其在威204H11-4井的应用. 钻井液与完井液. 2018(03): 32-36 .
    22. 刘永贵. 大庆致密油藏水平井高性能水基钻井液优化与应用. 石油钻探技术. 2018(05): 35-39 . 本站查看
    23. 赵成志. F98-P9井优质快速钻井施工技术. 石油和化工设备. 2018(12): 62-63+67 .
    24. 雷志永,陈强,郭涛,张永. 强封堵高性能水基钻井液在伊拉克Missan油田水平井中的应用. 长江大学学报(自科版). 2017(19): 63-67+104+119 .
    25. 罗春芝,何晨晨,杨云锋. 聚有机硅胺强抑制剂LGA-1的室内研究. 断块油气田. 2017(02): 273-276 .
    26. 李茂. 高性能水基钻井液应用研究. 化工管理. 2017(06): 25 .
    27. 王蓓蕾,赵海锋,郭康. 纳米成膜封堵钻井液在临兴区块的应用. 广东化工. 2017(13): 67-69 .
    28. 杨定桥,王超. 高性能水基钻井液应用研究. 中国石油石化. 2017(10): 86-87 .
    29. 侯杰. 硬脆性泥页岩微米-纳米级裂缝封堵评价新方法. 石油钻探技术. 2017(03): 32-37 . 本站查看
    30. 吴爽. 辽河油田无固相强抑制水基钻井液技术. 石油钻探技术. 2017(06): 42-48 . 本站查看
    31. 郭盛堂. 高性能水基钻井液体系研制与应用. 探矿工程(岩土钻掘工程). 2017(11): 26-29 .
    32. 郑文龙,乌效鸣,黄聿铭,王稳石,吴笛,黄河. 松辽盆地大陆科钻二开段大井眼钻井液技术. 地质与勘探. 2016(05): 931-936 .
    33. 梁文利. 高性能水基钻井液体系在水平井中的应用. 化工管理. 2016(21): 201 .
    34. 张明. 硅铵聚合物钻井液在永乐油田水平井中的应用. 石化技术. 2016(07): 189+193 .
    35. 杨智光. 大庆油田钻井完井技术新进展及发展建议. 石油钻探技术. 2016(06): 1-10 . 本站查看
    36. 孙妍. 龙26-平25长水平段水平井钻井技术. 探矿工程(岩土钻掘工程). 2016(11): 41-44 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (687) PDF downloads (106) Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return