Citation: | YU Meng, TIE Leilei, LI Xiang, LIU Wenhui. Development of Dispersed Copolymer Particle System for Profile Control in Offshore Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 118-122. DOI: 10.11911/syztjs.2020019 |
A high-viscosity polymer was developed in order to adjust the profile of heterogeneous offshore oilfields in the middle-high water cut period. Performance advantages were achieved by taking acrylamide (AM) as the main agent and N, N methylenebisacrylamide (MBA) as the crosslinker. This polymer can be processed by the grinding control technology to obtain a dispersed copolymer particle system. The experimental results showed that the grinding rate and grinding time had a large impact on the particle size distribution for the given monomer mass fraction (5%) and the AM/MBA mass ratio of 250 to 1. The results of plugging and migration experiment under simulated formation conditions indicated that the dispersed copolymer particle system had good injectability, deep migration ability and plugging performance. For the given dosage, the plugging ability of dispersed copolymer particles was significantly better than that of the polymer gel. The research suggested that the particle size distribution of this system was wide and controllable in the nanometer to micrometer level, making online injection possible. The system has the advantages of simple formulating process, low cost, temperature resistance and environmental protection, etc. It possesses good applicability in offshore oilfields for the profile control in the middle-high water cut period, and can be promoted and applied in oilfields.
[1] |
刘春林,肖伟. 油田水驱开发指标系统及其结构分析[J]. 石油勘探与开发, 2010, 37(3): 344–348. doi: 10.1016/S1876-3804(10)60037-7
LIU Chunlin, XIAO Wei. Index system of the water flooding development of oil fields and its structural analysis[J]. Petroleum Exploration and Development, 2010, 37(3): 344–348. doi: 10.1016/S1876-3804(10)60037-7
|
[2] |
由庆,于海洋,王业飞,等. 国内油田深部调剖技术的研究进展[J]. 断块油气田, 2009, 16(4): 68–71.
YOU Qing, YU Haiyang, WANG Yefei, et al. Technologies of in-depth profile control in China[J]. Fault-Block Oil & Gas Field, 2009, 16(4): 68–71.
|
[3] |
张吉磊,龙明,何逸凡,等. 渤海Q油田隔夹层发育底水稠油油藏精细注采技术[J]. 石油钻探技术, 2018, 46(2): 75–80.
ZHANG Jilei, LONG Ming, HE Yifan, et al. Fine injection-production technology for bottom-water viscous oil reservoirs with interlayers in Bohai Q Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(2): 75–80.
|
[4] |
宫红茹, 唐顺卿,胡志成. 胡状集油田特高含水油藏剩余油水驱技术[J]. 石油钻探技术, 2018, 46(5): 95–101.
GONG Hongru, TANG Shunqing, HU Zhicheng. Water flooding technology for the residual oil in the ultra-high water cut oil reservoirs of the Huzhuangji Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(5): 95–101.
|
[5] |
苑光宇,罗焕. 宽分子量聚合物/表面活性剂复合驱油体系性能评价[J]. 石油钻采工艺, 2018, 40(6): 805–810.
YUAN Guangyu, LUO Huan. Evaluation on the properties of broad-molecular-weight polymer/surfactant flooding system[J]. Oil Drilling & Production Technology, 2018, 40(6): 805–810.
|
[6] |
刘义刚,丁名臣,韩玉贵,等. 支化预交联凝胶颗粒在油藏中的运移与调剖特性[J]. 石油钻采工艺, 2018, 40(3): 393–399.
LIU Yigang, DING Mingchen, HAN Yugui, et al. Migration and profile control properties of B-PPG in oil reservoirs[J]. Oil Drilling & Production Technology, 2018, 40(3): 393–399.
|
[7] |
刘光普,刘述忍,李翔,等. 淀粉胶体系调剖性能的影响因素[J]. 石油钻采工艺, 2018, 40(1): 118–122.
LIU Guangpu, LIU Shuren, LI Xiang, et al. Factors influencing the profile control performance of starch gel[J]. Oil Drilling & Production Technology, 2018, 40(1): 118–122.
|
[8] |
贾玉琴,郑明科,杨海恩,等. 长庆油田低渗透油藏聚合物微球深部调驱工艺参数优化[J]. 石油钻探技术, 2018, 46(1): 75–82.
JIA Yuqin, ZHENG Mingke, YANG Haien, et al. Optimization of operational parameters for deep displacement involving polymer microspheres in low permeability reservoirs of the Changqing Oilfield[J]. Petroleum drilling technology, 2018, 46(1): 75–82.
|
[9] |
刘玉章,熊春明,罗健辉,等. 高含水油田深部液流转向技术研究[J]. 油田化学, 2006, 23(3): 248–251. doi: 10.3969/j.issn.1000-4092.2006.03.014
LIU Yuzhang, XIONG Chunming, LUO Jianhui, et al. Studies on indepth fluid diverting in oil reservoirs at high water cut stages[J]. Oilfield Chemistry, 2006, 23(3): 248–251. doi: 10.3969/j.issn.1000-4092.2006.03.014
|
[10] |
吴春新,崔名喆,杨东东,等. 海上多层合采油藏乳状液调剖性能定量表征[J]. 特种油气藏, 2018, 25(1): 146–149.
WU Chunxin, CUI Mingzhe, YANG Dongdong, et al. Quantitative characterization of effshore multi-layer production reservoir[J]. Special Oil & Gas Reservoirs, 2018, 25(1): 146–149.
|
[11] |
张建国. 低矿化度水/表面活性剂复合驱提高采收率技术[J]. 断块油气田, 2019, 26(5): 609–612.
ZHANG Jianguo. Alternative injection of low salinity water/surfactant to improve recovery[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 609–612.
|
[12] |
孙志刚,杨海博,杨勇,等. 注采交替提高采收率物理模拟实验[J]. 断块油气田, 2019, 26(1): 88–92.
SUN Zhigang, YANG Haibo, YANG Yong, et al. Physical simulation experiment by alternation of injection and production to improve oil recovery[J]. Fault-Block Oil & Gas Field, 2019, 26(1): 88–92.
|
[13] |
陈宗淇, 王光信, 徐桂英.胶体与界面化学[M].北京: 高等教育出版社, 2001: 152–164.
CHEN Zongqi, WANG Guangxin, XU Guiying. Colloid and interface chemistry[M]. Beijing: Higher Education Press, 2001: 152–164.
|
[14] |
ZHANG Hao, CHALLA R S, BAI Baojun, et al. Using screening test results to predict the effective viscosity of swollen superabsorbent polymer particles extrusion through an open fracture[J]. Industrial & Engineering Chemistry Research, 2010, 49(23): 12284–12293.
|
[15] |
YOU Qing, TANG Yongchun, DAI Caili, et al. A study on the morphology of a dispersed particle gel used as a profile control agent for improved oil recovery[J]. Journal of Chemistry, 2014, 2014: 150256.
|
[16] |
LAKATOS I J, LAKATOS-SZABÓ J, KOSZTIN, B, et al. Application of silicate/polymer water shut-off treatment in faulted reservoirs with extreme high permeability[R]. SPE 144112, 2011.
|
1. |
田志宾,张嗣祺,杨庚佳,罗小兵. 超高温井下热管理系统优化设计与实验研究. 华中科技大学学报(自然科学版). 2025(04): 150-156 .
![]() | |
2. |
田志宾,彭嘉乐,鄢星宇,魏赞庆,杨庚佳,罗小兵. 测井仪被动式热管理系统室温冷却研究. 石油钻探技术. 2024(01): 146-154 .
![]() | |
3. |
顾玉洋,夏竹君,罗鹏,王勇,李世举. MRCT-HT旋转井壁取心技术在南海东部A井中的应用. 石油和化工设备. 2024(04): 110-112+103 .
![]() | |
4. |
张波涛,罗鸣,张万栋,刘峰,孙艳军. 海上超高温高压井取心工具关键性能评价及应用研究. 中国科技论文. 2024(07): 760-768 .
![]() |