Wu Wei, Ling Wenxue, Si Yinghui. Coring Challenges and Solutions in the YD Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(3): 18-22. DOI: 10.11911/syztjs.201503004
Citation: Wu Wei, Ling Wenxue, Si Yinghui. Coring Challenges and Solutions in the YD Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(3): 18-22. DOI: 10.11911/syztjs.201503004

Coring Challenges and Solutions in the YD Oilfield

More Information
  • Received Date: February 19, 2015
  • Revised Date: April 20, 2015
  • In the YD Oilfield, early wildcat wells provided only limited core data and there was low core recovery. In order to acquire enough core data and to improve the core recovery in this oilfield, coring challenges were first analyzed, since the coring intervals were prone to break due to existence of dissolved caves and the fact they contained alternating hard and soft formations with high heterogeneity and high H2S. Then, considering these challenges and the practice of coring in this oilfield, a specific coring solution was proposed for the YD Oilfield, that included consideration of aspects of coring tools selection, wellbore preparation, runing in hole, coring parameters optimization, core cutting and pulling out of hole. In addition, this article also demonstrates the coring drilling experiences in Well APP3 and F09. The solution was applied in Wells APP3 and F09,and their core recovery rate in these wells significantly improved. The results indicate that the proposed solution could effectively address the challenges of coring in this oilfield.
  • [1]
    鲍洪志,杨顺辉,侯立中,等.伊朗Y油田F地层防卡技术[J].石油钻探技术,2013,41(3):67-72. Bao Hongzhi,Yang Shunhui,Hou Lizhong,et al.Pipe sticking prevention measures in F Formation of Iranian Y Oilfield[J].Petroleum Drilling Techniques,2013,41(3):67-72.
    [2]
    周成贵.在取心钻进中产生磨心的原因及其预防[J].钻采工艺,1990,13(4):15-17. Zhou Chenggui.The reasons and preventions of jamming during coring operation[J].Drilling Production Technology,1990,13(4):15-17.
    [3]
    Briner A P,Azzouni A,Chitnis R,et al.Sweet success in sour coring[R].SPE 128007,2010.
    [4]
    Khan A M,Onezime J,Mosalem D,et al.Successful coring in 8.5-in.hole section using anti-jamming technology in Southern Iraq[R].SPE 172099,2014.
    [5]
    Salman Z,Asif K,Asif K,et al.Applications of state of the art anti-jam coring system:a case study[R].SPE 156208,2011.
    [6]
    孔志刚,于希.辽河油田古潜山储层钻井取心技术[J].石油钻探技术,2014,42(3):50-54. Kong Zhigang,Yu Xi.Coring techniques for buried hill reservoirs in Liaohe Oilfield[J].Petroleum Drilling Techniques,2014,42(3):50-54.
    [7]
    Sino L A,Warren T M,Armagost W K,et al.Development of an antiwhirl core bit[R].SPE 24587,1995.
    [8]
    许俊良,宋维华,任红.老油区疏松地层取心关键技术研究及现场应用[J].石油钻探技术,2012,40(5):26-29. Xu Junliang,Song Weihua,Ren Hong.Research and field application of key coring technology for unconsolidated formation in matured oilfield[J].Petroleum Drilling Techniques,2012,40(5):26-29.
    [9]
    任立伟,夏柏如,唐文泉,等.伊朗Y油田深部复杂地层钻井液技术[J].石油钻探技术,2013,41(4):92-96. Ren Liwei,Xia Bairu,Tang Wenquan,et al.Drilling fluid technology for deep troublesome formation of Y Oilfield in Iran[J].Petroleum Drilling Techniques,2013,41(4):92-96.
    [10]
    王兴武,李让,王万红.我国西部地区超深井钻井取心技术[J].天然气工业,2010,30(11):63-66. Wang Xingwu,Li Rang,Wang Wanhong.Coring technology in ultra-deep wells in West China[J].Natural Gas Industry,2010,30(11):63-66.
  • Related Articles

    [1]QIN Wenjuan, KANG Zhengming, ZHANG Yi, WU Jie, NI Weining. Influence of Structure of Modular Electromagnetic Logging While Drilling Instrument on Measurement Signals[J]. Petroleum Drilling Techniques, 2024, 52(3): 137-145. DOI: 10.11911/syztjs.2023101
    [2]QU Hao, CHEN Feng, CHEN Jialei, ZHANG Hao, MING Chuanzhong, LI Jirong. Three-Dimensional Mechanical Characteristics of Drill Collar Joints under Downhole Equivalent Impact Torque in Extra-Deep Well[J]. Petroleum Drilling Techniques, 2024, 52(2): 211-217. DOI: 10.11911/syztjs.2024044
    [3]KANG Zhengming, QIN Haojie, ZHANG Yi, LI Xin, NI Weining, LI Fengbo. Data Inversion of Azimuthal Electromagnetic Wave Logging While Drilling Based on LSTM Neural Network[J]. Petroleum Drilling Techniques, 2023, 51(2): 116-124. DOI: 10.11911/syztjs.2023047
    [4]LIU Tianlin, YUE Xizhou, LI Guoyu, MA Mingxue, WANG Yiyi. Study over the Geo-Signal Properties of Ultra-Deep Electromagnetic Wave Logging While Drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 41-48. DOI: 10.11911/syztjs.2022110
    [5]WU Baizhi, YANG Zhen, GUO Tongzheng, YUAN Xiyong. Response Characteristics of Logging While Drilling System with Multi-Scale Azimuthal Electromagnetic Waves[J]. Petroleum Drilling Techniques, 2022, 50(6): 7-13. DOI: 10.11911/syztjs.2022107
    [6]XIE Yuan, LIU Dejun, LI Caifang, ZHAI Ying, SUN Yu. Forward Modeling in Hydraulic Fracture Detection by Means of Electromagnetic Wave Logging While Drilling in Vertical Wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123-129. DOI: 10.11911/syztjs.2019133
    [7]HUANG Mingquan, YANG Zhen. Simulation to Determine Depth of Detection and Response Characteristics while Drilling of an Ultra-Deep Electromagnetic Wave Instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114-119. DOI: 10.11911/syztjs.2019132
    [8]YANG Zhen, WEN Yi, XIAO Hongbing. A New Method of Detecting while Drilling Resistivity Anisotropy with Azimuthal Electromagnetic Wave Tools[J]. Petroleum Drilling Techniques, 2016, 44(3): 115-120. DOI: 10.11911/syztjs.201603021
    [9]Guo Xianmin. Millimeter Wave Drilling Technology[J]. Petroleum Drilling Techniques, 2014, 42(3): 55-60. DOI: 10.3969/j.issn.1001-0890.2014.03.011
    [10]Yu Fu, Jin Yan, Chen Mian, Niu Chengcheng, Li Xiaoyi. Analysis of Response Characteristic of P-Wave Velocity in Abnormal Over-Pressure Formation[J]. Petroleum Drilling Techniques, 2014, 42(2): 23-27. DOI: 10.3969/j.issn.1001-0890.2014.02.005

Catalog

    Article Metrics

    Article views (3928) PDF downloads (4276) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return