WANG Xigui, ZOU Deyong, YANG Liwen, GAO Wei, SUN Shaoliang, SU Yang. Development and Field Application of a Coalbed Methane Coring Tool with Pressure Maintenance, Thermal Insulation, and Shape Preservation Capabilities[J]. Petroleum Drilling Techniques, 2021, 49(3): 94-99. DOI: 10.11911/syztjs.2021061
Citation: WANG Xigui, ZOU Deyong, YANG Liwen, GAO Wei, SUN Shaoliang, SU Yang. Development and Field Application of a Coalbed Methane Coring Tool with Pressure Maintenance, Thermal Insulation, and Shape Preservation Capabilities[J]. Petroleum Drilling Techniques, 2021, 49(3): 94-99. DOI: 10.11911/syztjs.2021061

Development and Field Application of a Coalbed Methane Coring Tool with Pressure Maintenance, Thermal Insulation, and Shape Preservation Capabilities

More Information
  • Received Date: December 19, 2020
  • Revised Date: April 28, 2021
  • Available Online: May 10, 2021
  • In the process of lifting the coalbed methane (CBM) cores from the subsurface to ground, free gas escapes, adsorbed gas is partially desorbed and pore-permeability test data is distorted, seriously hampering the establishment of the CBM development plan. Therefore, a CBM coring tool with pressure maintenance, thermal insulation and shape preservation capabilities was developed. By designing an arc closed ball-valve, the failure in the pressure-maintenance seal was overcome by using a fully sealed ball-valve chamber that can withstand a pressure of 60 MPa. Using rubber tubes to hold cores and silica aeroge for thermal insulation, a composite coring inner barrel with thermal insulation function was designed, which allowed the coring tool to achieve the advantages of both pressure confinement and thermal insulation.The surface-set and impregnated composite diamond coring bit was optimized, thereby improving the coring bit footage. The CBM coring tool was applied to Well G-X20 for three times, obtaining a cumulative footage of 9.60 m, with a coring recovery rate of 94.48%, and a pressure maintenance rate up to 80%. The results showed that the proposed coring tool for CBM was very effective in pressure maintenance and gas preservation. Combined with sophisticated field construction technology, the coring tool can provide technical support for fine exploration and development of unconventional oil and gas resources such as coalbed methane and shale gas.
  • [1]
    闫霞,温声明,聂志宏,等. 影响煤层气开发效果的地质因素再认识[J]. 断块油气田,2020,27(3):375–380.

    YAN Xia, WEN Shengming, NIE Zhihong, et al. Re-recognition of geological factors affecting coalbed methane development effect[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 375–380.
    [2]
    张健,汪志明,王开龙. 煤层几何参数和渗透率对水平井开采煤层气的影响[J]. 石油钻探技术,2009,37(4):80–83.

    ZHANG Jian, WANG Zhiming, WANG Kailong. Effects of coal bed geometric parameters and permeability on horizontal well production in coalbed methane reservoir[J]. Petroleum Drilling Techniques, 2009, 37(4): 80–83.
    [3]
    吴双,汤达祯,李松,等. 煤层气储层孔渗参数的应力响应特征[J]. 油气地质与采收率,2019,26(6):80–86.

    WU Shuang, TANG Dazhen, LI Song, et al. Stress response characteristics of porosity and permeability of coalbed methane reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(6): 80–86.
    [4]
    陈磊,田景春,文怀军,等. 柴达木盆地北缘鱼卡煤田侏罗系煤层气特征及含气性评价[J]. 石油实验地质,2019,41(2):215–221.

    CHEN Lei, TIAN Jingchun, WEN Huaijun, et al. Jurassic coal bed methane characteristics and gas-bearing property evaluation in Iqe Coalfield, northern Qaidam Basin[J]. Petroleum Geology & Experiment, 2019, 41(2): 215–221.
    [5]
    朱永宜. KZ型单动双管取心钻具的研制与应用[J]. 石油钻探技术,2006,34(3):19–23. doi: 10.3969/j.issn.1001-0890.2006.03.006

    ZHU Yongyi. Development and application of KZ single rotary and double tube core barrel[J]. Petroleum Drilling Technology, 2006, 34(3): 19–23. doi: 10.3969/j.issn.1001-0890.2006.03.006
    [6]
    梁海明,裴学良,赵波. 页岩地层取心技术研究及现场应用[J]. 石油钻探技术,2016,44(1):39–43.

    LIANG Haiming, PEI Xueliang, ZHAO Bo. Coring techniques in shale formations and their field application[J]. Petroleum Drilling Techniques, 2016, 44(1): 39–43.
    [7]
    杨立文. 古巴Majaguillar稠油油藏大斜度井取心技术[J]. 石油机械,2017,45(9):53–56.

    YANG Liwen. The coring technique applied in high inclined well of heavy oil reservoir in Cuba Majaguillar Block[J]. China Petroleum Machinery, 2017, 45(9): 53–56.
    [8]
    DICKENS G R, PAULL C K, WALLACE P. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir[J]. Nature, 1997, 385(6615): 426–428. doi: 10.1038/385426a0
    [9]
    胡海良,唐海雄,罗俊丰,等. 深水天然气水合物钻井及取心技术[J]. 石油钻采工艺,2009,31(1):27–29.

    HU Hailiang, TANG Haixiong, LUO Junfeng, et al. Deepwater gas hydrates drilling and coring techniques[J]. Oil Drilling & Production Technology, 2009, 31(1): 27–29.
    [10]
    朱庆忠,苏雪峰,杨立文,等. GW-CP194-80M型煤层气双保压取心工具研制及现场试验[J]. 特种油气藏,2020,27(5):139–144.

    ZHU Qingzhong, SU Xuefeng, YANG Liwen, et al. Development and field test of GW-CP194-80M CBM dual pressure coring tool[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 139–144.
    [11]
    杨立文,苏洋,罗军,等. GW-CP194-80A型保压取心工具的研制与应用[J]. 天然气工业,2020,40(4):91–96.

    YANG Liwen, SU Yang, LUO Jun, et al. Development and application of GW-CP194-80A pressure-maintaining coring tool[J]. Natural Gas Industry, 2020, 40(4): 91–96.
    [12]
    任红,裴学良,吴仲华,等. 天然气水合物保温保压取心工具研制及现场试验[J]. 石油钻探技术,2018,46(3):44–48.

    REN Hong, PEI Xueliang, WU Zhonghua, et al. Development and field tests of pressure-temperature preservation coring tools for gas hydrate[J]. Petroleum Drilling Techniques, 2018, 46(3): 44–48.
    [13]
    许俊良,薄万顺,朱杰然. 天然气水合物钻探取心关键技术研究进展[J]. 石油钻探技术,2008,36(5):32–36.

    XU Junliang, PU Wanshun, ZHU Jieran. Development of gas hydrate coring technology[J]. Petroleum Drilling Techniques, 2008, 36(5): 32–36.
    [14]
    王西贵,邹德永,杨立文,等. 深层超深层煤层气保压取心工具设计[J]. 石油机械,2020,48(1):40–45.

    WANG Xigui, ZOU Deyong, YANG Liwen, et al. Design of a pressure-preservation coring tool for deep and ultra-deep coal bed methane samples[J]. China Petroleum Machinery, 2020, 48(1): 40–45.
    [15]
    钱可贵,张金涛,安丰媛. 保压取心工具差动总成的改进[J]. 石油机械,2013,41(10):37–39. doi: 10.3969/j.issn.1001-4578.2013.10.010

    QIAN Kegui, ZHANG Jintao, AN Fengyuan. Improvement of the differential assembly of pressure-keeping coring tool[J]. China Petroleum Machinery, 2013, 41(10): 37–39. doi: 10.3969/j.issn.1001-4578.2013.10.010
    [16]
    王西贵, 邹德永, 刘笑傲. 煤层气保压取心的圆弧闭合密封装置: CN2020206915772 [P]. 2020-12-01.

    WANG Xigui, ZOU Deyong, LIU Xiao’ao. Circular arc sealing device for pressure retaining coring of coalbed methane: CN2020206915772 [P]. 2020-12-01.
    [17]
    陈忠帅,吴仲华,司英晖. 石墨烯改性海绵取心工具研制与试验[J]. 石油钻探技术,2020,48(6):75–79.

    CHEN Zhongshuai, WU Zhonghua, SI Yinghui. Development and testing of a graphene- modified sponge coring tool[J]. Petroleum Drilling Techniques, 2020, 48(6): 75–79.
    [18]
    曹华庆,龙志平. 苏北盆地戴南组和阜宁组地层取心关键技术[J]. 石油钻探技术,2019,47(2):32–37.

    CAO Huaqing, LONG Zhiping. Key coring technologies for the Dainan Formation and Funing Formation in North Jiangsu Basin[J]. Petroleum Drilling Techniques, 2019, 47(2): 32–37.
    [19]
    苏洋. 松散地层密闭环保取心技术[J]. 石油钻采工艺,2019,41(5):592–596.

    SU Yang. Environmentally-friendly sealed coring technology for unconsolidated formations[J]. Oil Drilling & Production Technology, 2019, 41(5): 592–596.
  • Related Articles

    [1]HU Wenge. Progress and the Way Forward of Key Engineering Technologies for “Deep Underground Engineering” in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2024, 52(2): 58-65. DOI: 10.11911/syztjs.2024027
    [2]ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, DAI Yongbo, ZHANG Jincheng, XU Mingbiao. Optimal and Fast Drilling Technologies for Stereoscopic Development of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16-21. DOI: 10.11911/syztjs.2022097
    [3]HAN Laiju, YANG Chunxu. Key Technologies for Drilling and Completion of Horizontal Shale Oil Wells in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 22-28. DOI: 10.11911/syztjs.2021073
    [4]WANG Minsheng, GUANG Xinjun, GENG Lidong. Key Drilling/Completion Technologies and Development Trends in the Efficient Development of Shale Oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1-10. DOI: 10.11911/syztjs.2019076
    [5]ZHAO Jinzhou. The Key Engineering Techniques of the Wen 23 Underground Gas Storage[J]. Petroleum Drilling Techniques, 2019, 47(3): 18-24. DOI: 10.11911/syztjs.2019063
    [6]LU Baoping, DING Shidong. New Progress and Development Prospect in Shale Gas Engineering Technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1-9. DOI: 10.11911/syztjs.2018001
    [7]YUAN Guangjie, XIA Yan, JIN Gentai, BAN Fansheng. Present State of Underground Storage and Development Trends in Engineering Technologies at Home and Abroad[J]. Petroleum Drilling Techniques, 2017, 45(4): 8-14. DOI: 10.11911/syztjs.201704002
    [8]MA Yongsheng, CAI Xunyu, ZHAO Peirong. The Support of Petroleum Engineering Technologies in Trends in Oil and Gas Exploration and Development-Case Study on Oil and Gas Exploration in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(2): 1-9. DOI: 10.11911/syztjs.201602001
    [9]LI Yang, XUE Zhaojie. Challenges and Development Tendency of Engineering Technology in Oil and Gas Development in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(1): 1-5. DOI: 10.11911/syztjs.201601001
    [10]Zeng Yijin. Integration Technology of Geology Engineering for Shale Gas Development[J]. Petroleum Drilling Techniques, 2014, 42(1): 1-6. DOI: 10.3969/j.issn.1001-0890.2014.01.001
  • Cited by

    Periodical cited type(4)

    1. 孙正心,金衍,苏乾潇,孟翰,郭旭洋,任义丽. 基于光学薄片图像的纹层类型人工智能识别技术. 石油钻探技术. 2025(01): 75-85 . 本站查看
    2. 贾承造,王祖纲,姜林,赵文. 中国页岩油勘探开发研究进展与科学技术问题. 世界石油工业. 2024(04): 1-11+13 .
    3. 杜玉山,蒋龙,程紫燕,李伟忠,任敏华,刘巍,倪良田,陈建勋,蔡鑫,郭士博,王云鹤,刘艳,方正,彭艳霞,隆佳佳. 胜利济阳页岩油开发进展与攻关方向. 油气地质与采收率. 2024(05): 77-98 .
    4. 马立军,王骁睿,赵倩倩,姬靖皓. 页岩油环保型开发策略实现资源开发和环境保护协调发展. 石油钻采工艺. 2024(05): 635-650 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (463) PDF downloads (98) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return