Citation: | ZHOU Bocheng, XIONG Wei, LAI Jianlin, FANG Qilong. Low-Cost Fracturing Technology in Normal-Pressure Shale Gas Reservoirs in Wulong Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 80-85. DOI: 10.11911/syztjs.2022011 |
Normal-pressure shale reservoirs in Wulong Block have low energy and production, and suffer from difficulties in beneficial development. For this reason, a low-cost fracturing technology was studied for its development. Considering difficulties of fracturing stimulation in Wulong Block, induced stress calculation, fracture simulation, and fracturing cost comparisons were carried out. This allowed the fracturing stage length, number of clusters, and operation parameters to be optimized. Further, the fracturing materials and equipment were chosen. A new fracturing technology was thereby developed, involving a short fracturing stage length, a single-cluster sleeve, low-viscosity slick water, low-cost quartz sand, continuous sand addition at a high proppant concentration, which was then applied in the field test on Well A in Wulong Block. Through the application of the unlimited sliding sleeve completion and the real-time adjustment of on-site fracturing parameters, the production of Well A after fracturing was comparable to that of the fracturing well on the same platform with fracturing parameters of a medium fracturing stage length, tight cluster spacing, and ceramic proppants. In this study, the fracturing cost was reduced by 52.8%, and the fracturing performance sped up to 8 stages per day. The low-cost fracturing technology has provided technical reference for the beneficial development of normal-pressure shale gas in Wulong Block.
[1] |
聂海宽,汪虎,何治亮,等. 常压页岩气形成机制、分布规律及勘探前景:以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报,2019,40(2):131–143. doi: 10.7623/syxb201902001
NIE Haikuan, WANG Hu, HE Zhiliang, et al. Formation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir: a case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2019, 40(2): 131–143. doi: 10.7623/syxb201902001
|
[2] |
彭勇民,龙胜祥,何希鹏,等. 彭水地区常压页岩气储层特征及有利区评价[J]. 油气藏评价与开发,2020,10(5):12–19.
PENG Yongmin, LONG Shengxiang, HE Xipeng, et al. Characteristics of normal-pressure shale gas reservoirs and evaluation of its favorable areas in Pengshui[J]. Reservoir Evaluation and Development, 2020, 10(5): 12–19.
|
[3] |
方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发,2019,9(5):1–13. doi: 10.3969/j.issn.2095-1426.2019.05.001
FANG Zhixiong. Challenges and countermeasures for exploration and development of normal pressure shale gas in Southern China[J]. Reservoir Evaluation and Development, 2019, 9(5): 1–13. doi: 10.3969/j.issn.2095-1426.2019.05.001
|
[4] |
蒋廷学,苏瑗,卞晓冰,等. 常压页岩气水平井低成本高密度缝网压裂技术研究[J]. 油气藏评价与开发,2019,9(5):78–83. doi: 10.3969/j.issn.2095-1426.2019.05.010
JIANG Tingxue, SU Yuan, BIAN Xiaobing, et al. Network fracturing technology with low cost and high density for normal pressure shale gas[J]. Reservoir Evaluation and Development, 2019, 9(5): 78–83. doi: 10.3969/j.issn.2095-1426.2019.05.010
|
[5] |
刘建坤,蒋廷学,卞晓冰,等. 常压页岩气低成本高效压裂技术对策[J]. 钻井液与完井液,2020,37(3):377–383. doi: 10.3969/j.issn.1001-5620.2020.03.019
LIU Jiankun, JIANG Tingxue, BIAN Xiaobing, et al. The countermeasure of low cost and high efficiency fracturing technology of normal pressure shale gas[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 377–383. doi: 10.3969/j.issn.1001-5620.2020.03.019
|
[6] |
夏海帮. 页岩气井双暂堵压裂技术研究与现场试验[J]. 石油钻探技术,2020,48(3):90–96. doi: 10.11911/syztjs.2020065
XIA Haibang. The research and field testing of dual temporary plugging fracturing technology for shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90–96. doi: 10.11911/syztjs.2020065
|
[7] |
路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001
LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techni-ques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001
|
[8] |
杨怀成,夏苏疆,高启国,等. 常压页岩气全电动压裂装备及技术示范应用效果分析[J]. 油气藏评价与开发,2021,11(3):348–355.
YANG Huaicheng, XIA Sujiang, GAO Qiguo, et al. Application effect of full-electric fracturing equipment and technology for normal pressure shale gas[J]. Reservoir Evaluation and Development, 2021, 11(3): 348–355.
|
[9] |
李庆辉,陈勉,金衍,等. 页岩脆性的室内评价方法及改进[J]. 岩石力学与工程学报,2012,31(8):1680–1685.
LI Qinghui, CHEN Mian, JIN Yan, et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1680–1685.
|
[10] |
GUO Tiankui, ZHANG Shicheng, QU Zhanqing, et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J]. Fuel, 2014, 128: 373–380. doi: 10.1016/j.fuel.2014.03.029
|
[11] |
TAN Peng, JIN Yan, HAN Ke, et al. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation[J]. Fuel, 2017, 206: 482–493. doi: 10.1016/j.fuel.2017.05.033
|
[12] |
FISHER M K, WRIGHT C A, DAVIDSON B M, et al. Integrating fracture mapping technologies to optimize stimulations in the Barnett Shale[R]. SPE 77441, 2002.
|
[13] |
GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treat-ments[J]. AAPG Bulletin, 2007, 91(4): 603–622. doi: 10.1306/11010606061
|
[14] |
CHENG Y. Impacts of the number of perforation clusters and cluster spacing on production performance of horizontal shale-gas wells[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(1): 31–40.
|
[15] |
潘林华,张士诚,程礼军,等. 水平井 “多段分簇” 压裂簇间干扰的数值模拟[J]. 天然气工业,2014,34(1):74–79. doi: 10.3787/j.issn.1000-0976.2014.01.011
PAN Linhua, ZHANG Shicheng, CHENG Lijun, et al. A numerical simulation of the inter-cluster interference in multi-cluster staged fracking for horizontal wells[J]. Natural Gas Industry, 2014, 34(1): 74–79. doi: 10.3787/j.issn.1000-0976.2014.01.011
|
[16] |
李勇明,陈曦宇,赵金洲,等. 水平井分段多簇压裂缝间干扰研究[J]. 西南石油大学学报(自然科学版),2016,38(1):76–83.
LI Yongming, CHEN Xiyu, ZHAO Jinzhou, et al. The effects of crack interaction in multi-stage horizontal fracturing[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(1): 76–83.
|
[17] |
FERGUSON K, THOMAS C, WELLHOEFER B, et al. Cementing sleeve fracture completion in eagle ford shale will forever change the delivery of hydraulic fracturing[R]. SPE 158490, 2012.
|
[18] |
STEGENT N A, FERGUSON K, SPENCER J. Comparison of fracture valves vs. plug-and-perforation completion in the oil segment of the eagle ford shale: a case study[J]. SPE Production & Operations, 2013, 28(2): 201–209.
|
[19] |
CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J, et al. The relationship between fracture complexity, reservoir properties, and fracture-treatment design[J]. SPE Production & Operations, 2010, 25(4): 438–452.
|
[20] |
吴奇,胥云,王晓泉,等. 非常规油气藏体积改造技术:内涵、优化设计与实现[J]. 石油勘探与开发,2012,39(3):352–358.
WU Qi, XU Yun, WANG Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352–358.
|
[21] |
FREDD C N, MCCONNELL S B, BONEY C L, et al. Experimental study of fracture conductivity for water-fracturing and conventional fracturing applications[J]. SPE Journal, 2001, 6(3): 288–298. doi: 10.2118/74138-PA
|
[22] |
夏海帮,包凯,王睿. 页岩气井用新型无限级全通径滑套压裂技术先导试验[J]. 油气藏评价与开发,2021,11(3):390–394.
XIA Haibang, BAO Kai, WANG Rui. Pilot test of new infinite stage and full-bore sliding sleeve fracturing technology in shale gas wells[J]. Reservoir Evaluation and Development, 2021, 11(3): 390–394.
|
1. |
郝少伟,张径硕,陈瑞杰,竟亚飞. 余吾矿不同软/硬煤+围岩下压裂参数优化模拟. 煤矿安全. 2025(01): 34-42 .
![]() | |
2. |
陈玲,孙伟,周亚彤. 常压页岩气藏储量起算标准研究——以渝东南地区武隆区块五峰组—龙马溪组页岩气藏为例. 油气藏评价与开发. 2025(01): 49-55 .
![]() | |
3. |
王科,卢双舫,娄毅,李楠,李海涛,叶铠睿,张砚,李松雷. 压裂液渗吸与富气页岩气井典型生产规律关系剖析. 特种油气藏. 2024(03): 158-166 .
![]() | |
4. |
周博成. 南川页岩气井无限级滑套开启异常分析与处理实践. 石油地质与工程. 2024(05): 94-99 .
![]() | |
5. |
林孝礼,周向东,支林,邓翔元. 丁山区块常压页岩气压裂认识及实践. 天然气技术与经济. 2024(06): 7-14 .
![]() | |
6. |
刘顺,刘建斌,陈鑫,周志祥,黄凯,杜恒毅,张亚龙,王宗振. 耐温自降解暂憋剂性能影响因素实验. 特种油气藏. 2024(06): 145-150 .
![]() | |
7. |
王昊,唐雯,张鹏鹏,王华,陶永富,乔梁,贾焱,刘乘宙. 考虑净现值的页岩气藏压裂水平井参数优化研究. 断块油气田. 2023(02): 205-212 .
![]() | |
8. |
孔祥伟,卾玄吉,齐天俊,陈青,任勇,王素兵,李亭,刘宇. 页岩气井复合暂堵泵压数学模型及影响因素. 特种油气藏. 2023(04): 156-162 .
![]() | |
9. |
王智鑫. 高性能水基钻井液体系设计与评价. 当代化工. 2023(09): 2153-2157 .
![]() | |
10. |
张莉娜,任建华,胡春锋. 常压页岩气立体开发特征及缝网干扰规律研究. 石油钻探技术. 2023(05): 149-155 .
![]() | |
11. |
姚红生,房启龙,袁明进,张壮. 渝东南常压页岩气工程工艺技术进展及下一步攻关方向. 石油实验地质. 2023(06): 1132-1142 .
![]() |