Li Yang, Deng Jingen, Yu Baohua, Liu Wei, Chen Jianguo. Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment[J]. Petroleum Drilling Techniques, 2014, 42(6): 80-86. DOI: 10.11911/syztjs.201406016
Citation: Li Yang, Deng Jingen, Yu Baohua, Liu Wei, Chen Jianguo. Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment[J]. Petroleum Drilling Techniques, 2014, 42(6): 80-86. DOI: 10.11911/syztjs.201406016

Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment

More Information
  • Received Date: March 28, 2014
  • Revised Date: August 03, 2014
  • In order to estimate effects of reservoir rock/barrier and interfacial properties on hydraulic fracture height control,studies were done to analyze and compare the effects of rock elastic modulus,in situ stress,and tensile strength on fracture height containment ability by Cohesive element based on the ABAQUS computing platform.Through numerical simulation,it was deduced that a barrier with high elastic modulus was not impeded when the fracture grows through the bonding interface,but was had an impact on the fracture height in the barrier.A barrier with minimum in situ stress and high tensile strength could significantly hinder the fracture height.The fracture height increased quickly when the interfacial shear strength of reservoir rock/barrier was beyond a critical value,and the fracture height was confined fully by the reservoir when the interfacial shear strength was lower than the critical value.Under proper conditions,the fracture propagated vertically in the reservoir and horizontally the interface,and thus develop into a T-shaped fracture.The research results showed that barrier with a high elastic modulus adversely affected fracture height containment.A barrier with minimum in situ stress and high tensile strength could strongly inhibit the fracture height propagation.The impact of in situ stress was about 1.6 times of tensile strength.The lower the shear strength of the interface,the easier for the reservoir rock/barrier to slip,which helped to contain the fracture height.
  • [1]
    Liu He,Wang Han,Wu Heng’an,et al.Effect of reservoir porosity and clay content on hydraulic fracture height containment.IPTC 16415,2013.
    [2]
    Gu Hongren,Siebrits E.Effect of formation modulus contrast on hydraulic fracture height containment[R].SPE 103822,2006.
    [3]
    Smith M B,Bale A B,Britt L K,et al.Layered modulus effects on fracture propagation,proppant placement,and fracture modeling[R].SPE 71654,2001.
    [4]
    Daneshy A A.Factors controlling the vertical growth of hydraulic fractures[R].SPE 118789,2009.
    [5]
    Daneshy A A.Hydraulic fracture propagation in layered formations[J].SPE Journal,1978,18(1):33-41.
    [6]
    Daneshy A A.Hydraulic fracture propagation in the presence of planes of weakness[R].SPE 4852,1974.
    [7]
    Barree R D,Winterfeld P H.Effects of shear planes and interfacial slippage on fracture growth and treating pressures[R].SPE 48926,1998.
    [8]
    Anderson G.Effects of friction on hydraulic fracture growth near unbonded interfaces in rocks[J].SPE Journal,1981,21(1):21-29.
    [9]
    黄荣樽.水力压裂裂缝的起裂和扩展[J].石油勘探与开发,1981,8(5):62-74. Huang Rongzun.The initiation and propagation of hydraulic fracture[J].Petroleum Exploration and Development,1981,8 (5):62-74.
    [10]
    周文高,胡永全,赵金洲,等.控制压裂缝高技术研究及影响因素分析[J].断块油气田,2006,13(4):70-72. Zhou Wengao,Hu Yongquan,Zhao Jinzhou,et al.Research on fracture height containment technology and analysis of influence factors[J].Fault-Block Oil Gas Field,2006,13(4):70-72.
    [11]
    Fisher M K,Warpinski N R.Hydraulic-fracture-height growth:real data[J].SPE Production Operations,2012,27(1):8-19.
    [12]
    陈治喜,陈勉,黄荣樽,等.层状介质中水力裂缝的垂向扩展[J].石油大学学报:自然科学版,1997,21(4):23-26,32. Chen Zhixi,Chen Mian,Huang Rongzun,et al.Vertical growth of hydraulic fracture in layered formations[J].Journal of the University of Petroleum,China:Edition of Natural Science,1997,21(4):23-26,32.
    [13]
    王瀚,刘合,张劲,等.水力裂缝的缝高控制参数影响数值模拟研究[J].中国科学技术大学学报,2011,41(9):820-825. Wang Han,Liu He,Zhang Jin,et al.Numerical simulation of hydraulic fracture height control with different parameters[J].Journal of University of Science and Technology of China,2011,41(9):820-825.
    [14]
    Tomar V,Zhai Jun,Zhou Min.Bounds for element size in a variable stiffness cohesive finite element model[J].International Journal for Numerical Methods in Engineering,2004,61(11):1894-1920.
    [15]
    Camanho P P,Dávila C G.Mixed-mode decohesion finite elements for the simulation of delamination in composite materials.NASA/TM-2002-211737,2002.
    [16]
    Turon A,Camanho P P,Costa J,et al.A damage model for the simulation of delamination in advanced composites under variable-mode loading[J].Mechanics of Materials,2006,38(11):1072-1089.
    [17]
    Economides M J,Nolte K G,Ahmed U.Reservoir stimulation[M].Chichester:Wiley,2000:5.15-5.16.
    [18]
    Hagoort J,Weatherill B,Settari A.Modeling the propagation of waterflood-induced hydraulic fractures[J].SPE Journal,1980,20(4):293-303.
    [19]
    Peirce A,Detournay E.An implicit level set method for modeling hydraulically driven fractures[J].Computer Methods in Applied Mechanics and Engineering,2008,197(33-40):2858-2885.
    [20]
    Fjar E,Holt R M,Raaen A M,et al.Petroleum related rock mechanics[M].2nd ed.Amsterdam:Elsevier,2008:60-64.
    [21]
    贾喜荣.岩石力学与岩层控制[M].徐州:中国矿业大学出版社,2010:111-114. Jia Xirong.Rock mechanics and strata control[M].Xuzhou:China University of Mining and Technology Press,2010:111-114.
  • Related Articles

    [1]WANG Xu, LIU Dejun, WU Shiwei, LI Yang, ZHAI Ying. Simulation of Hydraulic Fracture Responses Based on a Magnetotelluric Monitoring Method[J]. Petroleum Drilling Techniques, 2023, 51(6): 115-119. DOI: 10.11911/syztjs.2023018
    [2]WU Zhiying, HU Yafei, JIANG Tingxue, ZHANG Baoping, YAO Yiming, DONG Ning. Study on Propagation and Diversion Characteristics of Hydraulic Fractures in Vuggy Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(4): 90-96. DOI: 10.11911/syztjs.2022084
    [3]MENG Qingwei, JIANG Tianjie, LIU Yongjing, YANG Jie, WANG Yuezhi. Calculation and Correction of Azimuth Errors Based on Finite Element Analysis[J]. Petroleum Drilling Techniques, 2022, 50(3): 66-73. DOI: 10.11911/syztjs.2022031
    [4]WU Shiwei, LIU Dejun, ZHAO Yang, WANG Xu, FENG Xue, LI Yang. Finite-Element Forward Modeling of Electromagnetic Response of Hydraulic Fractures in Layered Medium[J]. Petroleum Drilling Techniques, 2022, 50(2): 132-138. DOI: 10.11911/syztjs.2022060
    [5]XIE Yuan, LIU Dejun, LI Caifang, ZHAI Ying, SUN Yu. Forward Modeling in Hydraulic Fracture Detection by Means of Electromagnetic Wave Logging While Drilling in Vertical Wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123-129. DOI: 10.11911/syztjs.2019133
    [6]XIE Han, KUANG Yuchun, QIN Chao. The Finite Element Simulation and Test of Rock Breaking by Non-Planar PDC Cutting Cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69-73. DOI: 10.11911/syztjs.2019043
    [7]LIAN Zhanghua, LIU Yang, LIN Tiejun, LUO Zeli, MOU Yisheng. Fracture Analysis of 4(2)/1 REG Turbine Shaft Connection Thread under Complex Working Conditions[J]. Petroleum Drilling Techniques, 2018, 46(3): 53-58. DOI: 10.11911/syztjs.2018051
    [8]NI Xiaowei, XU Guanyou, AO Xuanfeng, FENG Jiaming, AI Lin, LIU Diren. The Influencing Factors on the Polarizing Angle of Array Laterolog Curves[J]. Petroleum Drilling Techniques, 2018, 46(2): 120-126. DOI: 10.11911/syztjs.2018017
    [9]Liu Xiuquan, Chen Guoming, Song Qiang, Chang Yuanjiang, Xu Liangbin. Collapse Assessment for Deepwater Drilling Risers on the Basis of Finite Element Method[J]. Petroleum Drilling Techniques, 2015, 43(4): 43-47. DOI: 10.11911/syztjs.201504008
    [10]Turbodrill Seal Ring Temperature Finite Element Analysis[J]. Petroleum Drilling Techniques, 2011, 39(2): 112-116. DOI: 10.3969/j.issn.1001-0890.2011.02.023
  • Cited by

    Periodical cited type(16)

    1. 熊冬,贺甲元,马新仿,曲兆亮,郭天魁,马诗语. 深部煤及顶底板不同射孔位置条件下的压裂模拟——以鄂尔多斯盆地某气田8号深部煤层为例. 煤炭学报. 2024(12): 4897-4914 .
    2. 景东阳,李治平,韩瑞刚. 致密储层水力压裂裂缝几何形态地质影响因素及控制方法. 科学技术与工程. 2022(21): 9129-9136 .
    3. 王明星,纪大刚,袁峰,王健,马新仿,邹雨时,张兆鹏. 多岩性储集层暂堵压裂缝高扩展特征试验研究. 科学技术与工程. 2022(24): 10534-10543 .
    4. 杨琦,张红杰,王春鹏,梅文博,杨帆,毛峥. 煤系地层致密砂岩压裂技术可行性研究. 当代化工. 2021(09): 2176-2181 .
    5. 宋景远,姚谋,景文平,刘圣战,毛冠华,张恒,季长伟. 环江油田巴19区块长7段钙夹层评价与大斜度井分段压裂优化. 钻探工程. 2021(10): 29-35 .
    6. 李明辉,周福建,胡晓东,张路锋,王博. 大斜度井多簇水力压裂裂缝扩展数值模拟. 科学技术与工程. 2020(28): 11555-11561 .
    7. 甄怀宾,张伟强,吴飞鹏,孙伟,朱卫平. 煤层水力压裂影响因素数值模拟研究. 非常规油气. 2020(06): 101-106 .
    8. 兰天庆,胡泊洲,董文楠,张昕. 砂煤岩互层水力裂缝扩展规律的数值模拟研究. 能源与环保. 2018(10): 38-44+49 .
    9. 李保林. 浅析影响盐间页岩油藏压裂施工及返排特征的关键因素. 江汉石油职工大学学报. 2018(06): 18-21 .
    10. 李扬,邓金根,刘伟,闫伟,曹文科,王鹏飞. 水平井分段多簇限流压裂数值模拟. 断块油气田. 2017(01): 69-73 .
    11. 吴晓光,李阳兵,章文达,王志文,刘丽珍,姜力,李成荫. 利用横波各向异性评价含煤页岩气储层压裂缝高度——以新场地区须家河组五段为例. 工程地球物理学报. 2017(04): 468-474 .
    12. 吴锐,邓金根,蔚宝华,刘伟,李扬,李明,彭成勇. 临兴区块石盒子组致密砂岩气储层压裂缝高控制数值模拟研究. 煤炭学报. 2017(09): 2393-2401 .
    13. 谷文彬,裴玉彬,赵安军,王涛,蔡军,吴凯凯. 人工隔层技术在控缝高压裂井中的应用. 石油钻采工艺. 2017(05): 646-651 .
    14. 许定江,练章华,林铁军,邓子麒. ABAQUS软件在油气井工程中的应用及分析. 断块油气田. 2016(04): 518-522 .
    15. 李建雄,刘茂林,郭天魁,刘晓强,李小龙. 径向井引导水力裂缝扩展机理. 断块油气田. 2016(06): 803-806 .
    16. 刘雨,艾池. 多级压裂诱导应力作用下天然裂缝开启规律研究. 石油钻探技术. 2015(01): 20-26 . 本站查看

    Other cited types(25)

Catalog

    Article Metrics

    Article views (2798) PDF downloads (3779) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return