Citation: | XIE Yuan, LIU Dejun, LI Caifang, ZHAI Ying, SUN Yu. Forward Modeling in Hydraulic Fracture Detection by Means of Electromagnetic Wave Logging While Drilling in Vertical Wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123-129. DOI: 10.11911/syztjs.2019133 |
In order to understand the distribution of oil and gas resources in low permeability reservoirs and better control the productivity of oil and gas wells, it is necessary to systematically study the fractures generated from hydraulic fracturing. Based on the theory of electromagnetic field, an analytical model in homogeneous and isotropic formations was established, then the formation and fracture model of vetical well was established using finite element software. Forward modeling was carried out on the amplitude ratio and phase difference of induced electromotive force between the receiving coils of electromagnetic wave logging tool. The results of the forward modeling showed that: signal amplitude ratio and phase difference around fracture change significantly; phase difference shows an obvious stratification, and there is higher resolution for propped fractures with different heights and different electrical conductivities of proppant. The most sensitive factor is the electrical conductivity of the proppant. A better simulation response was obtained under the source distance of the instrument was 0.25 m and the transmitting frequency was 400 KHz. The above research results indicated that it is feasible to use electromagnetic wave logging while drilling to detect hydraulic fractures in vertical wells. The research conclusions also provided a certain theoretical basis for the detection and evaluation of hydraulic fractures in vertical wells and could thus be applied in similar situations.
[1] |
霍玉雁,岳喜洲,孙建孟. 测井资料在压裂设计中的应用[J]. 测井技术, 2008, 32(5): 446–450. doi: 10.3969/j.issn.1004-1338.2008.05.014
HUO Yuyan, YUE Xizhou, SUN Jianmeng. Application of logging data in fracturing design[J]. Well Logging Technology, 2008, 32(5): 446–450. doi: 10.3969/j.issn.1004-1338.2008.05.014
|
[2] |
XUE D, RABINOVICH M, BESPALOV F, et al. Characterization of fracture length and formation resistivity from array induction data[R]. SPWLA-2008-III, 2008,
|
[3] |
HU G D, GELDMACHER I M, LIU R C. Effect of fracture orientation on induction logs: a modeling study[R]. SPE 133802, 2010.
|
[4] |
PARDO D, TORRES-VERDNI C. Sensitivity analysis for the appraisal of hydrofractures in horizontal wells with borehole resistivity measurements[J]. Geophysics, 2013, 78(4): 209–222. doi: 10.1190/geo2013-0014.1
|
[5] |
YANG K, TORRES-VERDIN C, YILMAZ A E. Detection and quantification of three-dimensional hydraulic fractures with horizontal borehole resistivity measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4605–4615. doi: 10.1109/TGRS.2015.2402656
|
[6] |
易新民,唐雪萍,梁涛,等. 利用测井资料预测判断水力压裂裂缝高度[J]. 西南石油大学学报(自然科学版), 2009, 31(5): 21–24. doi: 10.3863/j.issn.1674-5086.2009.05.006
YI Xinmin, TANG Xueping, LIANG Tao, et al. Prediction and assessment of fracture height of hydraulic fracturing with logging data[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(5): 21–24. doi: 10.3863/j.issn.1674-5086.2009.05.006
|
[7] |
温伟. 补偿中子测井在水力压裂缝高检测中的应用[J[J]. 辽宁化工, 2013, 42(7): 828–830.
WEN Wei. Application of compensated neutron log in fracture height detection after hydraulic fracturing[J]. Liaoning Chemical Industry, 2013, 42(7): 828–830.
|
[8] |
崔明月, 付海峰, 李永平, 等.声波监测裂缝起裂对近井裂缝几何形状的影响研究[C]//第四届全国低渗透油气藏压裂酸化技术研讨会论文集.北京: 中国石油勘探开发研究院, 2010: 53–63.
CUI Mingyue, FU Haifeng, LI Yongping, et al. Study on the influence of acoustic monitoring of fracture initiation on near-well fracture geometry[C]// Proceedings of the 4th national symposium on fracturing and acidification technology for low permeability reservoirs. Beijing: China Petroleum Exploration and Development Research Institute, 2010: 53-63.
|
[9] |
VEJCHODSKY T, SOLIN P. Discrete maximum principle for higher-order finite elements in 1D[J]. Mathematics of Computation, 2007, 76(260): 1833–1846. doi: 10.1090/S0025-5718-07-02022-4
|
[10] |
高杰,辛秀艳,陈文辉,等. 随钻电磁波电阻率测井之电阻率转化方法与研究[J]. 测井技术, 2008, 32(6): 503–507. doi: 10.3969/j.issn.1004-1338.2008.06.004
GAO Jie, XIN Xiuyan, CHEN Wenhui, et al. Resistivity derivation in electromagnetic wave propagation resistivity logging while drilling[J]. Well Logging Technology, 2008, 32(6): 503–507. doi: 10.3969/j.issn.1004-1338.2008.06.004
|
[11] |
朱庚雪,刘得军,张颖颖,等. 基于hp-FEM的随钻电磁波测井仪器响应正演分析[J]. 石油钻探技术, 2015, 43(2): 63–70.
ZHU Gengxue, LIU Dejun, ZHANG Yingying, et al. Forward modeling of responses of an ELWD tool based on hp-FEM[J]. Petroleum Drilling Techniques, 2015, 43(2): 63–70.
|
[12] |
LIU Dejun, MA Zhonghua, XING Xiaonan, et al. Numerical simulation of LWD resistivity response of carbonate formation using self-adaptive hp-FEM[J]. Applied Geophysics, 2013, 10(1): 97–108. doi: 10.1007/s11770-013-0368-2
|
[13] |
SHARMA M M, BASU S. Fracture diagnosis using electromagnetic methods: US20160282502[P]. 2016-09-29.
|
[14] |
PARDO D, TORRES-VERDIN C, PASZYNSKI M. Numerical simulation of 3D EM borehole measurements using an hp-adaptive goal-oriented finite-element formulation[R]. SEG-2007-0653, 2007.
|
[15] |
YANG Kai, CELIK E, TORRES-VERDIN C, et al. Detection and quantification of 3D hydraulic fractures with multi-component low-frequency borehole resistivity measurements[R]. SEG-2013-1213, 2013.
|
[16] |
NAM M J, PARDO D, TORRES-VERDIN C. Simulation of borehole-eccentered triaxial induction measurements using a Fourierhpfinite-element method[J]. Geophysics, 2013, 78(1): 41–52.
|
[17] |
李辉,刘得军,刘彦昌,等. 自适应hp-FEM在随钻电阻率测井仪器响应数值模拟中的应用[J]. 地球物理学报, 2012, 55(8): 2787–2797. doi: 10.6038/j.issn.0001-5733.2012.08.030
LI Hui, LIU Dejun, LIU Yanchang, et al. Application of self-adaptive hp-FEM in numerical simulation of resistivity logging-while-drilling[J]. Chinese Journal of Geophysics, 2012, 55(8): 2787–2797. doi: 10.6038/j.issn.0001-5733.2012.08.030
|
[18] |
MA Zhonghua, LIU Dejun, LI Hui, et al. Numerical simulation of a multi-frequency resistivity logging-while-drilling tool using a highly accurate and adaptive higher-order finite element method[J]. Advances in Applied Mathematics & Mechanics, 2012, 4(4): 439–453.
|
[1] | MENG Qingwei, JIANG Tianjie, LIU Yongjing, YANG Jie, WANG Yuezhi. Calculation and Correction of Azimuth Errors Based on Finite Element Analysis[J]. Petroleum Drilling Techniques, 2022, 50(3): 66-73. DOI: 10.11911/syztjs.2022031 |
[2] | WU Shiwei, LIU Dejun, ZHAO Yang, WANG Xu, FENG Xue, LI Yang. Finite-Element Forward Modeling of Electromagnetic Response of Hydraulic Fractures in Layered Medium[J]. Petroleum Drilling Techniques, 2022, 50(2): 132-138. DOI: 10.11911/syztjs.2022060 |
[3] | XIE Han, KUANG Yuchun, QIN Chao. The Finite Element Simulation and Test of Rock Breaking by Non-Planar PDC Cutting Cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69-73. DOI: 10.11911/syztjs.2019043 |
[4] | LIAN Zhanghua, LIU Yang, LIN Tiejun, LUO Zeli, MOU Yisheng. Fracture Analysis of 4(2)/1 REG Turbine Shaft Connection Thread under Complex Working Conditions[J]. Petroleum Drilling Techniques, 2018, 46(3): 53-58. DOI: 10.11911/syztjs.2018051 |
[5] | NI Xiaowei, XU Guanyou, AO Xuanfeng, FENG Jiaming, AI Lin, LIU Diren. The Influencing Factors on the Polarizing Angle of Array Laterolog Curves[J]. Petroleum Drilling Techniques, 2018, 46(2): 120-126. DOI: 10.11911/syztjs.2018017 |
[6] | Liu Xiuquan, Chen Guoming, Song Qiang, Chang Yuanjiang, Xu Liangbin. Collapse Assessment for Deepwater Drilling Risers on the Basis of Finite Element Method[J]. Petroleum Drilling Techniques, 2015, 43(4): 43-47. DOI: 10.11911/syztjs.201504008 |
[7] | Zhu Gengxue, Liu Dejun, Zhang Yingying, Wang Zheng, Lai Tianxiang. Forward Modeling of Responses of an ELWD Tool Based on hp-FEM[J]. Petroleum Drilling Techniques, 2015, 43(2): 63-70. DOI: 10.11911/syztjs.201502012 |
[8] | Li Yang, Deng Jingen, Yu Baohua, Liu Wei, Chen Jianguo. Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment[J]. Petroleum Drilling Techniques, 2014, 42(6): 80-86. DOI: 10.11911/syztjs.201406016 |
[9] | Yu Yang, Zhou Wei, Liu Xiaomin, Fu Jianhong, Zheng Jiangli. Finite Element Numerical Simulation of Expansive Force on Solid Expandable Tube and Its Application[J]. Petroleum Drilling Techniques, 2013, 41(5): 107-110. DOI: 10.3969/j.issn.1001-0890.2013.05.021 |
[10] | Turbodrill Seal Ring Temperature Finite Element Analysis[J]. Petroleum Drilling Techniques, 2011, 39(2): 112-116. DOI: 10.3969/j.issn.1001-0890.2011.02.023 |
1. |
杨森锋,董胜伟,罗书洵,赵敏,张向阳. 新型纳米渗吸剂性能评价及应用. 精细石油化工. 2025(01): 4-8 .
![]() | |
2. |
杨静,张献伟,李锦锋,龚嘉顺,张梦雅,杨峰,薛井泉,白峰. 下寺湾油田致密油地质工程一体化压裂技术. 石油化工应用. 2025(05): 15-20 .
![]() | |
3. |
张云逸. 页岩油水平井穿层压裂先导性试验——以鄂尔多斯盆地庆城油田华H100平台为例. 中国石油勘探. 2023(04): 92-104 .
![]() | |
4. |
慕立俊,拜杰,齐银,薛小佳. 庆城夹层型页岩油地质工程一体化压裂技术. 石油钻探技术. 2023(05): 33-41 .
![]() | |
5. |
谢建勇,崔新疆,李文波,朱靖生,伍晓虎,褚艳杰,陈依伟,汤涛,朱思静,吴承美,张金风. 准噶尔盆地吉木萨尔凹陷页岩油效益开发探索与实践. 中国石油勘探. 2022(01): 99-110 .
![]() | |
6. |
蔡萌,唐鹏飞,魏旭,刘宇,张浩,张宝岩,耿丹丹. 松辽盆地古龙页岩油复合体积压裂技术优化. 大庆石油地质与开发. 2022(03): 156-164 .
![]() | |
7. |
樊平天,刘月田,冯辉,周东魁,李平,周丰,秦静,余维初,史黎岩. 致密油新一代驱油型滑溜水压裂液体系的研制与应用. 断块油气田. 2022(05): 614-619 .
![]() |