Liu Xiuquan, Chen Guoming, Song Qiang, Chang Yuanjiang, Xu Liangbin. Collapse Assessment for Deepwater Drilling Risers on the Basis of Finite Element Method[J]. Petroleum Drilling Techniques, 2015, 43(4): 43-47. DOI: 10.11911/syztjs.201504008
Citation: Liu Xiuquan, Chen Guoming, Song Qiang, Chang Yuanjiang, Xu Liangbin. Collapse Assessment for Deepwater Drilling Risers on the Basis of Finite Element Method[J]. Petroleum Drilling Techniques, 2015, 43(4): 43-47. DOI: 10.11911/syztjs.201504008

Collapse Assessment for Deepwater Drilling Risers on the Basis of Finite Element Method

More Information
  • Received Date: April 20, 2015
  • Revised Date: June 30, 2015
  • Collapse is one of the major failure modes in deepwater drilling risers. In the existing theoretical algorithm, the effects of defects on riser collapse cannot be considered. This paper describes the effects of wear and corrosion on the potential for riser collapse, sets up a method of finite element evaluation for nonlinear collapse of deepwater drilling risers, and details how the verification and analysis for the method were carried out. It showed that the analysis results of finite element stress analysis coincided well with that recommended by API RP 2RD and DNV OS F101, the accuracy of finite element analysis method for riser collapse was verified. At the initial stage of riser collapse, risers were elastically deformed. After the difference between internal and external pressures reaches a critical value, risers were plastically deformed. The point of abrupt change from elastic to plastic deformation is the critical point of riser collapse. After collapsing, the original intact risers became flat and some risers that had defects initially became cone-shaped. In addition, the critical collapse pressure of risers decreased gradually with the increase of the defect sizes of risers.
  • [1]
    张磊,畅元江,刘秀全,等.深水钻井隔水管与防喷器紧急脱离后的反冲响应分析[J].石油钻探技术,2013,41(3):25-30. Zhang Lei,Chang Yuanjiang,Liu Xiuquan,et al. Recoil analysis for deepwater drilling riser after emergency disconnection with blowout preventer[J].Petroleum Drilling Techniques,2013,41(3):25-30.
    [2]
    ISO 13624-1 Petroleum and natural gas industries:drilling and production equipment:part 1:design and operation of marine drilling riser equipment[S].
    [3]
    刘秀全,陈国明,彭朋,等.深水钻井隔水管单根寿命管理方法[J].石油钻探技术,2011,39(2):40-44. Liu Xiuquan,Chen Guoming,Peng Peng,et al.Deepwater drilling riser joints management[J].Petroleum Drilling Techniques,2011,39(2):40-44.
    [4]
    隋秀香,梁羽丰,李轶明,等. 基于多普勒测量技术的深水隔水管气侵早期监测研究[J].石油钻探技术,2014,42(5):90-94. Sui Xiuxiang,Liang Yufeng,Li Yiming,et al. Early monitoring of the gas-cut in deepwater riser based on doppler measuring system[J].Petroleum Drilling Techniques,2014,42(5):90-94.
    [5]
    Erb P R,Ma Tien-Chi,Stockinger M P.Riser collapse:a unique problem in deep-water drilling[R].IADC/SPE 11394,1983.
    [6]
    Benjamin A C,Cunha D J S.Assessment of hydrostatic collapse of submarine pipelines:historical review of the classic methods:proceedings of the 2012 9th International Pipeline Conference,Calgary,September 24-28,2012[C].
    [7]
    Benjamin A C,Cunha D J.Assessment of hydrostatic collapse of submarine pipelines:the classical approach revisited:proceedings of the ASME 31st InternationaL Conference on Ocean,Offshore and Artic Engineering,Rio de Janeiro,July 1-6,2012[C].
    [8]
    Kavanagh W K,Lou J,Hays P.Design of steel risers in ultra deep water:the influence of recent code requirements on wall thickness design for 10,000ft water depth[R].OTC 15101,2003.
    [9]
    API BULLETIN 5C3—1994 Buttletin on formulas and calculations for casing,tubing,drill pipe and line pipe properties[S].
    [10]
    API RP 1111—1999 Design,construction,operation,and maintenance of offshore hydrocarbon pipelines[S].
    [11]
    API RP 2RD—1998 Design of risers for floating production systems (PFSs) and tension-leg platforms (TLPs)[S].
    [12]
    DNV OS F101—2005 Submarine pipeline systems[S].
    [13]
    秦荣.工程结构非线性[M].北京:科学出版社,2006. Qin Rong.Nonlinear engineering structure[M].Beijing:Science Press,2006.
    [14]
    刘金梅,周国强,韩国有.弧长法在服役石油井架非线性全过程仿真中的应用研究[J].应用力学学报,2012,29(2):229-233. Liu Jinmei,Zhou Guoqiang,Han Guoyou.Application of arc-length method to full range nonlinear simulation of derrick in-service[J].Chinese Journal of Applied Mechanics,2012,29(2):229-233.
  • Cited by

    Periodical cited type(44)

    1. 方健. 油田注水系统智能化关键技术研究进展. 化工自动化及仪表. 2025(01): 1-9 .
    2. 杜东哲,李兴,温仕娟. 井下无缆在线智能分注技术研究与应用. 石油化工自动化. 2025(01): 17-21 .
    3. 刘铁明,王柳,薛德栋,寇磊. 海上油田分层注气井下气体流量测试技术研究. 石油矿场机械. 2025(02): 7-14 .
    4. 窦金虎. 有缆智能一体化分注管柱在海上7″尾管注水井中的应用. 机电信息. 2024(08): 42-44 .
    5. 邹剑,刘长龙,张璐,张乐,陈征. 渤海油田智能分注技术研究现状及新进展. 中国海上油气. 2024(05): 170-177 .
    6. 刘义刚,刘长龙,张磊,张乐,薛德栋,徐元德. 海上油田压力波控制高效测调注水技术. 中国海上油气. 2024(05): 137-145 .
    7. 薛德栋,郭沛文,张成富,张磊,王瑶,沈琼,丁德吉. 渤海油田高效投捞无缆分注工艺研究及应用. 石油机械. 2024(10): 132-137 .
    8. 王勇,石张泽,卢晓辉. 有缆智能分层采油技术及其应用. 天津科技. 2024(12): 45-48 .
    9. 乔志学. 缆控智能分注技术现场试验与应用. 石油石化节能. 2023(03): 18-23 .
    10. 杨树坤,李越,廖朝辉,赵广渊,杜晓霞中. 渤海油田无缆智能分注技术优化及应用. 钻采工艺. 2023(03): 60-65 .
    11. 刘长龙,陈征,张乐,徐元德,蒋少玖,王威. 有缆智能配水器O形圈密封模拟研究. 液压气动与密封. 2023(08): 91-96 .
    12. 韩照阳,刘国振,张帅,吉洋. 过电缆压缩隔离密封工具研究与应用. 石化技术. 2023(10): 110-112 .
    13. 邹剑,刘长龙,郑灵芸,陈征,张伦玮. 井下永置式测调技术流量计研究现状及发展方向. 化工自动化及仪表. 2023(06): 729-735 .
    14. 孟祥海,夏欢,李彦阅,陈征,王楠,罗云龙,曹豹. 智能分注分采技术应用效果及其影响因素研究. 当代化工. 2022(01): 156-159 .
    15. 赵广渊,王天慧,杨树坤,李翔,吕国胜,杜晓霞. 渤海油田液压控制智能分注优化关键技术. 石油钻探技术. 2022(01): 76-81 . 本站查看
    16. 王东,王良杰,张凤辉,杨万有,程心平. 渤海油田分层注水技术研究现状及发展方向. 中国海上油气. 2022(02): 125-137 .
    17. 朱孟涛,李杨杨. 渤海油田含硫化氢井修井技术. 天津化工. 2022(03): 102-104 .
    18. 陈征,刘长龙,张乐,徐元德,王威,蒋少玖,张志熊. 小尺寸高温电缆测调系统研究. 仪器仪表用户. 2022(07): 15-18+4 .
    19. 张乐,刘长龙,陈征,徐元德,王威,蒋少玖,张志熊. 小尺寸高温电缆测调工作筒技术研究. 仪器仪表用户. 2022(08): 1-4 .
    20. 宋铭. 单孔悬开式堵塞器及其应用. 化学工程与装备. 2022(07): 151-154 .
    21. 赵仲浩,黄新春,张成富,丁德吉. 海上油田分层采油井缆控对接式智能配产新技术. 中国海上油气. 2022(04): 213-217 .
    22. 杨玲智,周志平,杨海恩,李法龙,胡改星. 井下柔性复合管预置电缆数字式分注技术. 石油钻探技术. 2022(06): 120-125 . 本站查看
    23. 王超. 偏心分层注水井一体化验封测调工具研制. 石油矿场机械. 2021(01): 73-76 .
    24. 毕天琪,杨晓东,田东海,牟燕. 智能分注分层流量自动比对测试技术研究与应用. 油气田地面工程. 2021(02): 11-14+21 .
    25. 邢晓光,方正,张辉,王鹏,王潇祎,郭玉廷. 智能分层射流泵排液技术. 油气井测试. 2021(01): 21-25 .
    26. 杨树坤,赵广渊,李啸峰,郭宏峰,杜晓霞,廖朝辉. 注水井智能无级调节配水器水嘴结构优选及评价. 河南科学. 2021(02): 196-203 .
    27. 谷元伟. 注水井智能分层测调技术的现场应用. 化学工程与装备. 2021(03): 27-28 .
    28. 孙林,李旭光,黄利平,夏光,杨淼. 渤海油田注水井延效酸化技术研究与应用. 石油钻探技术. 2021(02): 90-95 . 本站查看
    29. 赵广渊,季公明,杨树坤,吕国胜,杜晓霞,郭宏峰. 液控智能分注工艺调配及分层注水量计算方法. 断块油气田. 2021(02): 258-261 .
    30. 张斌,左凯,李宁,齐海涛. 海上智能分层配注器研究. 中国石油和化工标准与质量. 2021(07): 51-52 .
    31. 陈征,张乐,蓝飞,张晓冉,宋鑫,张志熊,王威,徐元德. 渤海油田智能分注技术应用现状及发展前景. 辽宁化工. 2021(05): 623-626 .
    32. 孟祥海,陈征,蓝飞,张乐,张志熊,赵广渊. 无缆智能配水器流量测试系统的优化与改进. 北京石油化工学院学报. 2021(02): 19-23 .
    33. 杨树坤,李越,李翔,郭宏峰,季公明,史景岩. 渤海油田测调一体分注关键技术改进及应用. 石油化工高等学校学报. 2021(04): 91-96 .
    34. 李鹏伟,王建宁,姜燕,苏毅,张旭,赵非,陈军政. 桥式同心分注井验封测调一体化工具研制及应用. 石油矿场机械. 2021(05): 84-89 .
    35. 党博,王新亚,刘长赞,任博文,杨玲. 永置式智能井监测系统多层半双工通信技术. 仪表技术与传感器. 2021(10): 109-114 .
    36. 李耀泽. 注水井智能测调管柱的应用及故障分析. 石化技术. 2021(09): 107-108 .
    37. 何海峰. 胜利海上疏松砂岩油藏分层防砂分层采油技术. 石油钻探技术. 2021(06): 99-104 . 本站查看
    38. 张智,杨昆,刘和兴,李磊,梁继文. 注水井井筒完整性设计方法. 石油钻采工艺. 2020(01): 76-85 .
    39. 郭宏峰,杨树坤,段凯滨,季公明,史景岩,安宗辉. 渤海油田可反洗测调一体分层注水工艺. 石油钻探技术. 2020(03): 97-101 . 本站查看
    40. 徐兴安,张凤辉,杨万有. 海上油田注水井智能监测与控制技术研究. 当代化工. 2020(07): 1396-1399 .
    41. 刘义刚,孟祥海,张云宝,夏欢,曹豹,罗云龙. 海上油田分注分采效果及其影响因素数值模拟——以渤海SZ36–1油田为例. 石油地质与工程. 2020(04): 95-101 .
    42. 肖国华,黄晓蒙,李会杰,关海峰. 直读测调偏心恒流配水器研制. 特种油气藏. 2020(05): 151-156 .
    43. 夏欢,刘义刚,孟祥海,张志熊,蓝飞,曹豹,罗云龙. 分层注水配注方法及其影响因素数值模拟研究. 辽宁化工. 2020(12): 1567-1573 .
    44. 刘佳. 影响注水井洗井质量的因素分析. 化学工程与装备. 2019(07): 144-145 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (3415) PDF downloads (3868) Cited by(53)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return