YANG Lingzhi, ZHOU Zhiping, YANG Haien, et al. Digital separated-zone water injection technologies with cable-preset downhole flexible composite pipe [J]. Petroleum Drilling Techniques,2022, 50(6):120-125. DOI: 10.11911/syztjs.2022057
Citation: YANG Lingzhi, ZHOU Zhiping, YANG Haien, et al. Digital separated-zone water injection technologies with cable-preset downhole flexible composite pipe [J]. Petroleum Drilling Techniques,2022, 50(6):120-125. DOI: 10.11911/syztjs.2022057

Digital Separated-Zone Water Injection Technologies with Cable-PresetDownhole Flexible Composite Pipe

More Information
  • Received Date: January 01, 2022
  • Revised Date: July 09, 2022
  • Available Online: November 14, 2022
  • Separated-zone water injection string in low-permeability oilfields is challenged by various problems after a long time in service, e.g. severe corrosion, scaling, and rapid decrease of separated-zone water injection conformity rate. To solve these problems, a digital separated-zone water injection string with a technology of cable-preset downhole flexible composite pipes was designed. The key tools, i.e. an intelligent water distributor and a cable-penetrated packer, were developed. Further, the key performances, including external pressure resistance and tensile strength, of the string were evaluated in laboratory. Separated-zone water injection technologies with flexible composite pipes suitable to downhole high-pressure were thereby developed. The laboratory evaluation results demonstrated that the developed string met the requirements on the packer setting pressure in separated-zone water injectors and the maximum external pressure resistance. The measurement error of the intelligent water distributor flow rate was below 2%. Field tests were carried out in four wells. The maximum service time was over 2 years, and the conformity rate of separated-zone water injection was 100%. This study indicates that the application of flexible composite pipes in cable preset digital separated-zone water injection technologies can effectively improve corrosion resistance, achieve automatic measurement and adjustment of separated-zone flow, remote sealing verification, and data monitoring, meet the requirements of packer setting, reverse circulation, and subsequent tests, all of which showcase promising application effects.

  • [1]
    刘合,裴晓含,罗凯,等. 中国油气田开发分层注水工艺技术现状与发展趋势[J]. 石油勘探与开发,2013,40(6):733–737. doi: 10.11698/PED.2013.06.13

    LIU He, PEI Xiaohan, LUO Kai, et al. Current status and trend of separated layer water flooding in China[J]. Petroleum Exploration and Development, 2013, 40(6): 733–737. doi: 10.11698/PED.2013.06.13
    [2]
    刘合,裴晓含,贾德利,等. 第四代分层注水技术内涵、应用与展望[J]. 石油勘探与开发,2017,44(4):608–614. doi: 10.11698/PED.2017.04.14

    LIU He, PEI Xiaohan, JIA Deli, et al. Connotation, application and prospect of the fourth-generation separated layer water injection technology[J]. Petroleum Exploration and Development, 2017, 44(4): 608–614. doi: 10.11698/PED.2017.04.14
    [3]
    李东雷. 预置电缆智能分层注聚合物技术的研究与应用[J]. 石油机械,2016,44(10):93–96. doi: 10.16082/j.cnki.issn.1001-4578.2016.10.021

    LI Donglei. Intelligent layered polymer injection technology with preset cable[J]. China Petroleum Machinery, 2016, 44(10): 93–96. doi: 10.16082/j.cnki.issn.1001-4578.2016.10.021
    [4]
    杨玲智,巨亚锋,申晓莉,等. 数字式分层注水流动特性研究与分析[J]. 石油机械,2014,42(10):52–55. doi: 10.3969/j.issn.1001-4578.2014.10.013

    YANG Lingzhi, JU Yafeng, SHEN Xiaoli, et al. Study and analysis of flow characteristics for digital separate-zone water flooding[J]. China Petroleum Machinery, 2014, 42(10): 52–55. doi: 10.3969/j.issn.1001-4578.2014.10.013
    [5]
    杨玲智,于九政,王子建,等. 鄂尔多斯超低渗储层智能注水监控技术[J]. 石油钻采工艺,2017,39(6):756–759. doi: 10.13639/j.odpt.2017.06.017

    YANG Lingzhi, YU Jiuzheng, WANG Zijian, et al. An intelligent waterflood monitoring technology used for the ultra-low permeability reservoirs in Ordos[J]. Oil Drilling & Production Technology, 2017, 39(6): 756–759. doi: 10.13639/j.odpt.2017.06.017
    [6]
    姚斌,杨玲智,于九政,等. 波码通信数字式分层注水技术研究与应用[J]. 石油机械,2020,48(5):71–77. doi: 10.16082/j.cnki.issn.1001-4578.2020.05.012

    YAO Bin, YANG Lingzhi, YU Jiuzheng, et al. Digital layered water injection based on wave code communication[J]. China Petroleum Machinery, 2020, 48(5): 71–77. doi: 10.16082/j.cnki.issn.1001-4578.2020.05.012
    [7]
    赵广渊,王天慧,杨树坤,等. 渤海油田液压控制智能分注优化关键技术[J]. 石油钻探技术,2022,50(1):76–81. doi: 10.11911/syztjs.2021125

    ZHAO Guangyuan, WANG Tianhui, YANG Shukun, et al. Key optimization technologies of intelligent layered water injection with hydraulic control in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(1): 76–81. doi: 10.11911/syztjs.2021125
    [8]
    何海峰. 胜利海上疏松砂岩油藏分层防砂分层采油技术[J]. 石油钻探技术,2021,49(6):99–104. doi: 10.11911/syztjs.2021027

    HE Haifeng. Separate layer sand control and oil production technology in offshore unconsolidated sandstone reservoirs of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(6): 99–104. doi: 10.11911/syztjs.2021027
    [9]
    贾贻勇,李永康. 胜坨油田套损井分层注水及测调技术[J]. 石油钻探技术,2021,49(2):107–112. doi: 10.11911/syztjs.2020137

    JIA Yiyong, LI Yongkang. Techniques of layering injection and the measurement-adjustment towards wells with casing damage in Shengtuo Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2): 107–112. doi: 10.11911/syztjs.2020137
    [10]
    肖国华,黄晓蒙,李会杰,等. 直读测调偏心恒流配水器研制[J]. 特种油气藏,2020,27(5):151–156. doi: 10.3969/j.issn.1006-6535.2020.05.023

    XIAO Guohua, HUANG Xiaomeng, LI Huijie, et al. Development of direct-reading measurement-adjustment eccentric constant-flow water distributor[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 151–156. doi: 10.3969/j.issn.1006-6535.2020.05.023
    [11]
    赵广渊,季公明,杨树坤,等. 液控智能分注工艺调配及分层注水量计算方法[J]. 断块油气田,2021,28(2):258–261.

    ZHAO Guangyuan, JI Gongming, YANG Shukun, et al. Allocation method and calculation of layered injection rate of liquid control intelligent layered water injection process[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 258–261.
    [12]
    杨玲智,刘延青,胡改星,等. 长庆油田同心验封测调一体化分层注水技术[J]. 石油钻探技术,2020,48(2):113–117. doi: 10.11911/syztjs.2020023

    YANG Lingzhi, LIU Yanqing, HU Gaixing, et al. Stratified water injection technology of concentric seal-check, logging and adjustment integration in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 113–117. doi: 10.11911/syztjs.2020023
    [13]
    刘义刚,陈征,孟祥海,等. 渤海油田分层注水井电缆永置智能测调关键技术[J]. 石油钻探技术,2019,47(3):133–139. doi: 10.11911/syztjs.2019044

    LIU Yigang, CHEN Zheng, MENG Xianghai, et al. Cable implanted intelligent injection technology for separate injection wells in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(3): 133–139. doi: 10.11911/syztjs.2019044
    [14]
    申晓莉,胡美艳,于九政,等. 柔性复合油管注水管柱的设计与试验[J]. 石油钻采工艺,2013,35(4):111–113. doi: 10.3969/j.issn.1000-7393.2013.04.033

    SHEN Xiaoli, HU Meiyan, YU Jiuzheng, et al. Designing and experiment of flexible composite water injection string[J]. Oil Drilling & Production Technology, 2013, 35(4): 111–113. doi: 10.3969/j.issn.1000-7393.2013.04.033
    [15]
    王薇,王俊涛,魏向军,等. 井下柔性复合管注水技术及应用[J]. 石油钻采工艺,2017,39(1):83–87. doi: 10.13639/j.odpt.2017.01.016

    WANG Wei, WANG Juntao, WEI Xiangjun, et al. Water injection technology based on downhole flexible composite pipe and its application[J]. Oil Drilling & Production Technology, 2017, 39(1): 83–87. doi: 10.13639/j.odpt.2017.01.016
    [16]
    胡美艳,申晓莉,于九政,等. 注水井用非金属复合材料油管试验检测与评价[J]. 石油矿场机械,2014,43(1):49–52. doi: 10.3969/j.issn.1001-3482.2014.01.013

    HU Meiyan, SHEN Xiaoli, YU Jiuzheng, et al. Testing and experiment of nonmetal compound material tubing for injection well[J]. Oil Field Equipment, 2014, 43(1): 49–52. doi: 10.3969/j.issn.1001-3482.2014.01.013
    [17]
    李风,张绍东,王观军,等. 玻纤带增强黏合型HDPE内衬柔性复合管性能试验研究[J]. 塑料工业,2021,49(增刊1):74–77. doi: 10.3969/j.issn.1005-5770.2021.Z1.014

    LI Feng, ZHANG Shaodong, WANG Guanjun, et al. Experimental study on the performance of HDPE flexible composite pipe with glass fiber reinforced adhesive liner[J]. China Plastics Industry, 2021, 49(supplement1): 74–77. doi: 10.3969/j.issn.1005-5770.2021.Z1.014
    [18]
    赵德银,杨静,李文升,等. 流动沙丘地区油气集输用柔性复合管安全评价方法[J]. 油气储运,2021,40(8):880–887.

    ZHAO Deyin, YANG Jing, LI Wensheng, et al. Safety evaluation method for flexible composite gathering and transmission pipelines of oil and gas in shifting dune areas[J]. Oil & Gas Storage and Transportation, 2021, 40(8): 880–887.
    [19]
    中华人民共和国国家质量监督检验检疫总局. 流体输送用热塑性塑料管材耐内压试验方法: GB/T 6111—2003[S]. 北京: 中国标准出版社, 2003.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Thermoplastics pipes for the conveyance of fluids—resistance to internal pressure—test method: GB/T 6111—2003[S]. Beijing: Standards Press of China, 2003.
    [20]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料 耐液体化学试剂性能的测定: GB/T 11547—2008[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Plastic-methods of test for the determination of the effects of immersion in liquid chemicals: GB/T 11547—2008[S]. Beijing: Standards Press of China, 2009.
  • Cited by

    Periodical cited type(10)

    1. 姚梦麟,陶云贺,贺洪举,侯克均,刘海军,熊宇,张冲. 致密砂岩碎屑颗粒粒度定量表征及对产能的指示意义. 地质科技通报. 2025(02): 214-223 .
    2. 原建伟,刘美佳,李超,吴春新,马栋. 窄河道油藏水平井边界校正系数研究. 石油钻探技术. 2023(01): 86-90 . 本站查看
    3. 唐晓敏,殷雪松,吕亚娟,宋延杰,陈学洋,易俊. 基于孔隙结构储层分类的中低孔特低渗储层渗透率确定——以B区块S油层为例. 地球物理学进展. 2023(01): 271-284 .
    4. 苏静,杨璐,邵广辉,林茂山,张艳丽,胡旋,董旭龙. 玛湖凹陷砂砾岩储层分类与产能预测方法研究. 长江大学学报(自然科学版). 2023(06): 30-40 .
    5. 魏锋,陈现,王迪. 东海X气田基于测井参数的渗透率及产能预测方法研究. 海洋石油. 2023(04): 83-86+95 .
    6. 殷洪川,胥良君,吕泽宇,庞进,唐雯,陈渝页. 页岩气井临界出砂产量预测方法. 特种油气藏. 2023(06): 135-140 .
    7. 刘君毅,冯进,管耀,肖张波,王清辉,刘伟男. 基于改进电成像孔隙度谱的海洋低孔低渗砂岩渗透率评价方法. 测井技术. 2023(06): 746-752 .
    8. 王鑫,张旭阳,黄长兵,汪康,顾明翔,吴伟. 试油数据在估算致密砂砾岩储层渗透率中的应用. 断块油气田. 2022(02): 214-217+238 .
    9. 侯亚伟,刘超,徐中波,安玉华,李景玲. 多层水驱开发油田采收率快速预测方法. 石油钻探技术. 2022(05): 82-87 . 本站查看
    10. 刘慧,丁心鲁,张士杰,方云贵,郝晓波,郑玮鸽. 地下储气库注气过程一体化压力及地层参数计算方法. 石油钻探技术. 2022(06): 64-71 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (283) PDF downloads (45) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return