Citation: | WU Zhiying, HU Yafei, JIANG Tingxue, et al. Study on propagation and diversion characteristics of hydraulic fractures in vuggy carbonate reservoirs [J]. Petroleum Drilling Techniques,2022, 50(4):90-96. DOI: 10.11911/syztjs.2022084 |
Hydraulic fractures generated in the stimulation of vuggy carbonate reservoirs feature complex propagation as they do not necessarily propagate along the prospected path. In view of this, vuggy carbonate rock samples were prepared based on the analysis of the vuggy characteristics of carbonate reservoirs. With test results of true triaxial hydraulic fracturing, the interference of cavities in the propagation of hydraulic fractures under different horizontal principal stress differences was investigated. Moreover, the extended numerical finite element method was used to analyze the factors affecting the propagation of hydraulic fractures in vuggy carbonate reservoirs and their propagation paths. The results revealed that non-planar propagation would occur when hydraulic fractures encountered cavities when the difference coefficient of the horizontal principal stress was below 0.15, and smaller horizontal principal stress was accompanied by a larger diversion propagation distance and more complex fracture pattern. When the coefficient was between 0.15 and 0.36, hydraulic fractures would overcome the stress concentration of cavities for planar propagation, but they would be captured by cavities encountered along the propagation path. When the coefficient was no less than 0.36, hydraulic fractures would overcome the stress concentration of cavities and penetrate cavities for planar propagation. In addition, the fracturing pressure would decrease as the stress difference increased. The research results can provide a reference for hydraulic fracturing design for vuggy carbonate reservoirs.
[1] |
雷群,万玉金,李熙喆,等. 美国致密砂岩气藏开发与启示[J]. 天然气工业,2010,30(1):45–48. doi: 10.3787/j.issn.1000-0976.2010.01.012
LEI Qun, WAN Yujin, LI Xizhe, et al. A study on the development of tight gas reservoirs in the USA[J]. Natural Gas Industry, 2010, 30(1): 45–48. doi: 10.3787/j.issn.1000-0976.2010.01.012
|
[2] |
张倩,李年银,李长燕,等. 中国海相碳酸盐岩储层酸化压裂改造技术现状及发展趋势[J]. 特种油气藏,2020,27(2):1–7.
ZHANG Qian, LI Nianyin, LI Changyan, et al. Overview and trend of acid-fracturing technology for marine carbonate reservoirs in China[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 1–7.
|
[3] |
丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20.
DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20.
|
[4] |
贺甲元,程洪,向红,等. 塔河油田碳酸盐岩储层暂堵转向压裂排量优化[J]. 石油钻采工艺,2021,43(2):233–238.
HE Jiayuan, CHENG Hong, XIANG Hong, et al. Optimizing the displacement of temporary plugging and diversion fracturing of the carbonate reservoirs in Tahe Oilfield[J]. Oil Drilling & Production Technology, 2021, 43(2): 233–238.
|
[5] |
吴丰,代槿,姚聪,等. 塔河油田奥陶系一间房组与鹰山组断溶体发育模式解剖[J]. 断块油气田,2022,29(1):33–39.
WU Feng,DAI Jin,YAO Cong,et al. Developmental mode analysis of the fault-karst reservoir in Yijianfang Formation and Yingshan Formation of Ordovician in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 33–39.
|
[6] |
赵海洋,刘志远,唐旭海,等. 缝洞型碳酸盐岩储层循缝找洞压裂技术[J]. 石油钻采工艺,2021,43(1):89–96.
ZHAO Haiyang, LIU Zhiyuan, TANG Xuhai, et al. Fracturing technology of searching for vugs along fractures in fractured-vuggy carbonate reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(1): 89–96.
|
[7] |
苗娟,何旭晟,王栋,等. 水平井精细分段深度酸化压裂技术研究与应用[J]. 特种油气藏,2022,29(2):141–148.
MIAO Juan, HE Xusheng, WANG Dong, et al. Study and application of fine segmented deep acid fracturing technology for horizontal wells[J]. Special Oil & Gas Reserviors, 2022, 29(2): 141–148.
|
[8] |
钟小军,张锐,吴刚,等. 复杂非均质碳酸盐岩储层酸岩反应动力学特征及酸压对策研究[J]. 钻井液与完井液,2020,37(6):798–802.
ZHONG Xiaojun, ZHANG Rui, WU Gang, et al. Study on dynamic characteristics of acid rock reaction and acid fracturing countermeasures in complex heterogeneous carbonate reservoirs[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 798–802.
|
[9] |
郭印同,杨春和,贾长贵,等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报,2014,33(1):52–59. doi: 10.13722/j.cnki.jrme.2014.01.006
GUO Yintong, YANG Chunhe, JIA Changgui, et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 52–59. doi: 10.13722/j.cnki.jrme.2014.01.006
|
[10] |
衡帅,杨春和,郭印同,等. 层理对页岩水力裂缝扩展的影响研究[J]. 岩石力学与工程学报,2015,34(2):228–237. doi: 10.13722/j.cnki.jrme.2015.02.002
HENG Shuai, YANG Chunhe, GUO Yintong, et al. Influence of bedding planes on hydraulic fracture propagation in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 228–237. doi: 10.13722/j.cnki.jrme.2015.02.002
|
[11] |
GUO Yintong, DENG Peng, YANG Chunhe, et al. Experimental investigation on hydraulic fracture propagation of carbonate rocks under different fracturing fluids[J]. Energies, 2018, 11(12): 1–15.
|
[12] |
GUO Yintong, HOU Longfei, YAO Yiming, et al. Experimental study on influencing factors of fracture propagation in fractured carbonate rocks[J]. Journal of Structural Geology, 2020, 131: 103955. doi: 10.1016/j.jsg.2019.103955
|
[13] |
周大伟. 缝洞型岩石体积压裂试验模拟研究[D]. 北京: 中国石油大学(北京), 2016.
ZHOU Dawei. Experimental investigation on fracture-vug rock of SRV fracturing[D]. Beijing: China University of Petroleum(Beijing), 2016.
|
[14] |
李林地,张士诚,张劲,等. 缝洞型碳酸盐岩储层水力裂缝扩展机理[J]. 石油学报,2009,30(4):570–573. doi: 10.3321/j.issn:0253-2697.2009.04.016
LI Lindi, ZHANG Shicheng, ZHANG Jin, et al. Mechanism of hydraulic fracture propagation in fracture-cavity carbonate reser-voirs[J]. Acta Petrolei Sinica, 2009, 30(4): 570–573. doi: 10.3321/j.issn:0253-2697.2009.04.016
|
[15] |
HUNSWECK M J, SHEN Yongxing, LEW A J. A finite element approach to the simulation of hydraulic fractures with lag[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(9): 993–1015. doi: 10.1002/nag.1131
|
[16] |
彪仿俊,刘合,张士诚,等. 水力压裂水平裂缝影响参数的数值模拟研究[J]. 工程力学,2011,28(10):228–235.
BIAO Fangjun, LIU He, ZHANG Shicheng, et al. A numerical study of parameter influences on horizontal hydraulic fracture[J]. Engineering Mechanics, 2011, 28(10): 228–235.
|
[17] |
张广明,刘合,张劲,等. 水平井水力压裂的三维有限元数值模拟研究[J]. 工程力学,2011,28(2):101–106.
ZHANG Guangming, LIU He, ZHANG Jin, et al. Three-dimensional finite element numerical simulation of horizontal well hydraulic fracturing[J]. Engineering Mechanics, 2011, 28(2): 101–106.
|
[18] |
侯龙飞. 缝洞型碳酸盐岩定向压裂模拟试验研究[D]. 重庆: 重庆大学, 2020.
HOU Longfei. Fracture-cavity carbonate directional fracturing simulation test research[D]. Chongqing: Chongqing University, 2020.
|
[19] |
孟勇,贾庆升,张潦源,等. 东营凹陷页岩油储层层间干扰及裂缝扩展规律研究[J]. 石油钻探技术,2021,49(4):130–138.
MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, et al. Research on interlayer interference and the fracture propagation law of shale oil reservoirs in the Dongying Sag [J]. Petroleum Drilling Techniques, 2021, 49(4): 130–138.
|
[20] |
崔壮,侯冰,付世豪,等. 页岩油致密储层一体化压裂裂缝穿层扩展特征[J]. 断块油气田,2022,29(1):111–117.
CUI Zhuang, HOU Bing, FU Shihao, et al. Fractures cross-layer propagation characteristics of integrated fracturing in shale oil tight reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 111–117.
|
[21] |
李新勇,耿宇迪,刘志远,等. 缝洞型碳酸盐岩储层压裂效果评价方法试验研究[J]. 石油钻探技术,2020,48(6):88–93.
LI Xinyong, GENG Yudi, LIU Zhiyuan, et al. An experimental study on evaluation methods for fracturing effect of fractured-vuggy carbonate reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 88–93.
|
[22] |
MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering., 1999, 46: 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
|
[1] | WANG Xu, LIU Dejun, WU Shiwei, LI Yang, ZHAI Ying. Simulation of Hydraulic Fracture Responses Based on a Magnetotelluric Monitoring Method[J]. Petroleum Drilling Techniques, 2023, 51(6): 115-119. DOI: 10.11911/syztjs.2023018 |
[2] | MENG Qingwei, JIANG Tianjie, LIU Yongjing, YANG Jie, WANG Yuezhi. Calculation and Correction of Azimuth Errors Based on Finite Element Analysis[J]. Petroleum Drilling Techniques, 2022, 50(3): 66-73. DOI: 10.11911/syztjs.2022031 |
[3] | WU Shiwei, LIU Dejun, ZHAO Yang, WANG Xu, FENG Xue, LI Yang. Finite-Element Forward Modeling of Electromagnetic Response of Hydraulic Fractures in Layered Medium[J]. Petroleum Drilling Techniques, 2022, 50(2): 132-138. DOI: 10.11911/syztjs.2022060 |
[4] | XIE Yuan, LIU Dejun, LI Caifang, ZHAI Ying, SUN Yu. Forward Modeling in Hydraulic Fracture Detection by Means of Electromagnetic Wave Logging While Drilling in Vertical Wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123-129. DOI: 10.11911/syztjs.2019133 |
[5] | XIE Han, KUANG Yuchun, QIN Chao. The Finite Element Simulation and Test of Rock Breaking by Non-Planar PDC Cutting Cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69-73. DOI: 10.11911/syztjs.2019043 |
[6] | Liu Xiuquan, Chen Guoming, Song Qiang, Chang Yuanjiang, Xu Liangbin. Collapse Assessment for Deepwater Drilling Risers on the Basis of Finite Element Method[J]. Petroleum Drilling Techniques, 2015, 43(4): 43-47. DOI: 10.11911/syztjs.201504008 |
[7] | Li Yang, Deng Jingen, Yu Baohua, Liu Wei, Chen Jianguo. Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment[J]. Petroleum Drilling Techniques, 2014, 42(6): 80-86. DOI: 10.11911/syztjs.201406016 |
[8] | Yu Yang, Zhou Wei, Liu Xiaomin, Fu Jianhong, Zheng Jiangli. Finite Element Numerical Simulation of Expansive Force on Solid Expandable Tube and Its Application[J]. Petroleum Drilling Techniques, 2013, 41(5): 107-110. DOI: 10.3969/j.issn.1001-0890.2013.05.021 |
[9] | Zhang Xu, Jiang Tingxue, Jia Changgui, Zhang Baoping, Zhou Jian. Physical Simulation of Hydraulic Fracturing of Shale Gas Reservoir[J]. Petroleum Drilling Techniques, 2013, 41(2): 70-74. DOI: 10.3969/j.issn.1001-0890.2013.02.014 |
[10] | Turbodrill Seal Ring Temperature Finite Element Analysis[J]. Petroleum Drilling Techniques, 2011, 39(2): 112-116. DOI: 10.3969/j.issn.1001-0890.2011.02.023 |
1. |
秦文娟,康正明,张意,仵杰,倪卫宁. 模块化随钻电磁波测井仪器结构对测量信号的影响. 石油钻探技术. 2024(03): 137-145 .
![]() | |
2. |
康正明,秦浩杰,张意,李新,倪卫宁,李丰波. 基于LSTM神经网络的随钻方位电磁波测井数据反演. 石油钻探技术. 2023(02): 116-124 .
![]() | |
3. |
杨宁宁. 随钻电磁波电阻率温度修正方法研究. 石油机械. 2020(01): 46-51 .
![]() | |
4. |
朱祖扬,倪卫宁,张卫,米金泰,郑奕挺. 随钻一体化测井仪平台开发. 石油钻探技术. 2019(01): 118-126 .
![]() | |
5. |
倪卫宁,康正明,路保平,柯式镇,李新,李铭宇. 随钻高分辨率电阻率成像仪器探测特性研究. 石油钻探技术. 2019(02): 114-119 .
![]() | |
6. |
刘珂,高文凯,洪迪峰. 随钻仪器工业级功率器件拓展应用研究. 石油机械. 2019(11): 26-31 .
![]() | |
7. |
李铭宇,柯式镇,康正明,李新,倪卫宁. 螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性. 石油钻探技术. 2018(01): 128-134 .
![]() | |
8. |
陈晓晖,高炳堂,宋朝晖. 超高阻盐膏层随钻电磁中继传输特性研究. 石油钻探技术. 2018(03): 114-119 .
![]() | |
9. |
张超,刘国强,夏正武,李艳红,邢博文. 长源距随钻定向电磁波测井仪器频率和源距选择方法. 电工技术学报. 2018(20): 4756-4762 .
![]() |