LI Mingyu, KE Shizhen, KANG Zhengming, LI Xin, NI Weining. Influence Factors of Measured Signal Intensity and the Response Characteristics of the Toroidal Coil Excitation LWD Laterolog Instrument[J]. Petroleum Drilling Techniques, 2018, 46(1): 128-134. DOI: 10.11911/syztjs.2018025
Citation: LI Mingyu, KE Shizhen, KANG Zhengming, LI Xin, NI Weining. Influence Factors of Measured Signal Intensity and the Response Characteristics of the Toroidal Coil Excitation LWD Laterolog Instrument[J]. Petroleum Drilling Techniques, 2018, 46(1): 128-134. DOI: 10.11911/syztjs.2018025

Influence Factors of Measured Signal Intensity and the Response Characteristics of the Toroidal Coil Excitation LWD Laterolog Instrument

More Information
  • Received Date: October 19, 2017
  • Revised Date: January 12, 2018
  • Compared with the traditional electrode resistivity LWD instrument,the toroidal coil excitation LWD laterolog instrument has signifycant advantages of wear resistance and less process difficulty.However,there is little theoretical research on this instrument in China.Based on the 3D finite element method,the logging response characteristics of the toroidal coil excitation LWD laterolog tool were studied,which analyzed the influence of instrument structural parameters on measured signal intensity.The simulation results indicated that measured signal intensity was positively correlated with the distance of receiving coils,and the longer the source spacing of the instrument and the bit sub,the weaker the measured signal intensity.Based on the simulation results,the simulation parameters were optimized.Researchers studied the detection characteristics of the instrument under different formation resistivity contrast,as well as the logging response characteristics of the instrument in deviated wells with different inclinations and surrounding rocks.Compared with the cable laterolog tool,the toroidal coil excitation LWD laterolog tool has a shallower detection depth,but it can meet the requirements of LWD.The research results are significant and can be used to guide the structural parameter design and the research on logging interpretation methods of toroidal coil excitation LWD laterolog instrument.
  • [1]
    HORSTMANN M,SUN K,BERGER P,et al.Resistivity anisotropy and formation dip evaluation in vertical and low angle wells using LWD directional electromagnetic measurements[R].SPWLA-2015-LLLL,2015.
    [2]
    FANG S,MERCHANT A,HART E,et al.Determination of intrinsic dip and azimuth from LWD azimuthal-propagation resistivity measurements in anisotropic formations[R].SPE 116123,2010.
    [3]
    许巍,柯式镇,李安宗,等.随钻电磁波测井仪器结构影响的三维有限元模拟[J].中国石油大学学报:自然科学版,2016,40(6):50-56. XU Wei,KE Shizhen,LI Anzong,et al.Structural effects analysis of an electromagnetic wave propagation resistivity LWD tool by 3D finite element method[J].Journal of China University of Petroleum (Edition of Natural Sciences),2016,40(6):50-56.
    [4]
    朱军,杨善森,刘刚,等.随钻双侧向电阻率测井响应数值模拟分析[J].测井技术,2017,41(2):146-150. ZHU Jun,YANG Shansen,LIU Gang,et al.Numerical analysis of logging responses for dual laterolog resistivity logging-while-drilling tool[J].Well Logging Technology,2017,41(2):146-150.
    [5]
    ARPS J J.Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem:US3305771[P].1967-02-21.
    [6]
    康正明,柯式镇,李新,等.钻头电阻率测井仪器探测特性研究[J].石油科学通报,2017,2(4):457-465. KANG Zhengming,KE Shizhen,LI Xin,et al.The detection characteristics study of the at-bit resistivity logging tool[J].Petroleum Science Bulletin,2017,2(4):457-465.
    [7]
    BONNER S,BAGERSH A,CLARK B,et al.A new generation of electrode resistivity measurements for formation evaluation while drilling[R].SPWLA-1994-OO,1994.
    [8]
    PRAMMER M G,MORYS M,KNIZHNIK S,et al.A high-resolution LWD resistivity imaging tool:field testing in vertical and highly deviated boreholes[J].Petrophysics,2009,50(1):49-66.
    [9]
    ALLOUCHE M,CHOW S,DUBOURG I,et al.High-resolution images and formation evaluation in slim holes from a new logging-while-drilling azimuthal laterolog device[R].SPE 131513,2010.
    [10]
    GIANZERO S,CHEMALI R,LIN Y,et al.A new resistivity tool for measurement-while-drilling[R].SPWLA-1985-A,1985.
    [11]
    BITTAR M S,HU G.The effects of rock anisotropy on LWD toroidal resistivity sensors[R].SPWLA-2004-WW,2004.
    [12]
    李安宗,李启明,朱军,等.方位侧向电阻率成像随钻测井仪探测特性数值模拟分析[J].测井技术,2014,38(4):407-410. LI Anzong,LI Qiming,ZHU Jun,et al.Numerical analysis of logging response for LWD azimuthal laterolog resistivity imaging tool[J].Well Logging Technology,2014,38(4):407-410.
    [13]
    BORGHI M,PIANI E,BARBIERI E,et al.New logging-while-drilling azimuthal resistivity and high resolution imaging in slim holes[R].OMC-2011-167,2011.
    [14]
    李启明,李安宗,孔亚娟,等.侧向类随钻测井仪器垂直分辨率分析[J].测井技术,2014,38(5):541-546. LI Qiming,LI Anzong,KONG Jane,et al.On vertical resolution of a laterolog-type logging while drilling tool[J].Well Logging Technology,2014,38(5):541-546.
    [15]
    史盼盼.水平井中的阵列感应测井响应特性研究[D].西安:西安石油大学,2016. SHI Panpan.The study on response characteristics of the array induction logging in the horizontal wells[D].Xi’an:Xi’an Shiyou University,2016.
    [16]
    童茂松,宋建华.0.2m分辨率双侧向测井仪器数值模拟[J].地球物理学进展,2014,29(5):2251-2257. TONG Maosong,SONG Jianhua.Numeric simulation of 0.2m vertical-resolution dual laterolog tool[J].Progress in Geophysis,2014,29(5):2251-2257.
    [17]
    倪卫宁,张晓彬,万勇,等.随钻方位电磁波电阻率测井仪分段组合线圈系设计[J].石油钻探技术,2017,45(2):115-120. NI Weining,ZHANG Xiaobin,WAN Yong,et al.The design of the coil system in LWD tools based on azimuthal electromagnetic-wave resistivity combined with sections[J].Petroleum Drilling Techniques,2017,45(2):115-120.
    [18]
    陈亮.斜井、水平井双侧向测井响应三维有限元数值分析[D].杭州:浙江大学,2008. CHEN Liang.Simulation of duallaterolog response in divate and horizontal wells with 3D finite element method[D].Hangzhou:Zhejiang University,2008.
    [19]
    杨震,肖红兵,李翠.随钻方位电磁波仪器测量精度对电阻率及界面预测影响分析[J].石油钻探技术,2017,45(4):115-120. YANG Zhen,XIAO Hongbing,LI Cui.Impacts of accuracy of azimuthal electromagnetic logging-while-drilling on resistivity and interface prediction[J].Petroleum Drilling Techniques,2017,45(4):115-120.
    [20]
    杨震,文艺,肖红兵.随钻方位电磁波仪器探测电阻率各向异性新方法[J].石油钻探技术,2016,44(3):115-120. YANG Zhen,WEN Yi,XIAO Hongbing.A new method of detecting while drilling resistivity anisotropy with azimuthal electromagnetic wave tools[J].Petroleum Drilling Techniques,2016,44(3):115-120.
    [21]
    李勇华,杨锦舟,杨震,等.随钻电阻率地层边界响应特征分析及应用[J].石油钻探技术,2016,44(6):111-116. LI Yonghua,YANG Jinzhou,YANG Zhen,et al.The analysis and application of formation interface response characteristics of the resistivity LWD tool[J].Petroleum Drilling Techniques,2016,44(6):111-116.
  • Related Articles

    [1]YU Libin, ZHANG Zhigang, JIANG Zhaomin, XU Hui, ZHANG Hongfu, HAN Xurui. Development and Field Testing of the Bionic Peristaltic Drilling Tool[J]. Petroleum Drilling Techniques, 2025, 53(1): 55-59. DOI: 10.11911/syztjs.2024113
    [2]HUANG Feng, CHEN Shichun, LIU Lichao, GUO Chao, LIU Yibin, SHI Yucai. Development and Field Test of BH-VDT3000 Vertical Drilling System[J]. Petroleum Drilling Techniques, 2024, 52(6): 62-68. DOI: 10.11911/syztjs.2024114
    [3]LIU Pingquan, LI Leibing, SHI Yucen, HAN Long. Research and Field Test of Electrically Controlled Sidewall Deep Penetrating Perforating Technology[J]. Petroleum Drilling Techniques, 2021, 49(3): 55-61. DOI: 10.11911/syztjs.2021055
    [4]ZHOU Jianping, YANG Zhanwei, XU Minjie, WANG Liwei, YAO Maotang, GAO Ying. Research and Field Tests of Weighted Fracturing Fluids with Industrial Calcium Chloride and Guar Gum[J]. Petroleum Drilling Techniques, 2021, 49(2): 96-101. DOI: 10.11911/syztjs.2021014
    [5]XIE Han, KUANG Yuchun, QIN Chao. The Finite Element Simulation and Test of Rock Breaking by Non-Planar PDC Cutting Cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69-73. DOI: 10.11911/syztjs.2019043
    [6]SU Zhenguo, TANG Zhijun. The Design and Field Testing of Two-Stage and Two-Speed Drilling Tools[J]. Petroleum Drilling Techniques, 2019, 47(1): 59-64. DOI: 10.11911/syztjs.2019010
    [7]YANG Haibo, HOU Ting, FENG Dejie, TENG Zhaozheng, WU Liugen. Research and Field Test of Non-Drilling Plug Expandable Casing Patching Technology[J]. Petroleum Drilling Techniques, 2017, 45(5): 73-77. DOI: 10.11911/syztjs.201705013
    [8]ZHENG Xiaozhi, GU Lei, MA Lanrong, ZHANG Guoan. Performance and Field Tests of Rotary Expandable Liner Hanger[J]. Petroleum Drilling Techniques, 2016, 44(3): 55-60. DOI: 10.11911/syztjs.201603010
    [9]Wang Zaiming, Zhu Kuanliang, Feng Jinghai, Wu Yan, Shen Yuanyuan. Development and Field Test of High-Temperature Gel Valve[J]. Petroleum Drilling Techniques, 2015, 43(4): 78-82. DOI: 10.11911/syztjs.201504014
    [10]Yang Liqiang, Ba Lujun, Xue Jiangping. Development and Field Experiment on PDM with Uniform Wall Thickness[J]. Petroleum Drilling Techniques, 2012, 40(2): 109-112. DOI: 10.3969/j.issn.1001-0890.2012.02.021
  • Cited by

    Periodical cited type(12)

    1. 张诗峥,赵东雅,王文博. 基于热力耦合仿真的PDC齿磨损特性及破岩机理研究. 石油矿场机械. 2025(03): 40-48 .
    2. 陈炼,魏小虎,曹强,周岩,杨迎新,胡川,赵志杰,伍彬. 凸棱非平面聚晶金刚石齿的破岩机理及在含砾地层中的应用. 中国机械工程. 2024(02): 371-379 .
    3. 荣准,杨学军,张航,颜爽,张琦,张龙龙. 五宝场硬塑性地层斧形曲面PDC齿破岩性能研究. 钻探工程. 2024(02): 85-93 .
    4. 李基伟,李乾,田胜雷,黄达,李玉梅,席岩. 东海深部高研磨地层冲击钻井PDC齿优选研究. 石油机械. 2024(08): 77-84 .
    5. 谢志涛,赵宇璇,郭勇,吴德胜,李亚东. 脊形PDC齿的机械性能和破岩效果. 金刚石与磨料磨具工程. 2024(05): 599-606 .
    6. 程伟,幸雪松,楼一珊,朱亮,尹彪. 三棱形PDC齿破岩特性数值模拟研究. 石油机械. 2024(11): 21-28 .
    7. 刘伟吉,阳飞龙,董洪铎,程润,祝效华. 异形PDC齿混合切削破碎花岗岩特性研究. 工程力学. 2023(03): 245-256 .
    8. 李涛,苏强,杨哲,徐卫强,胡锡辉. 川西地区超深井钻井完井技术现状及攻关方向. 石油钻探技术. 2023(02): 7-15 . 本站查看
    9. 王勇军,梁伟,张涛,杜志强,王磊,佟铮. 深部地热钻探中硬塑性泥岩地层钻头应用研究. 钻探工程. 2023(03): 92-98 .
    10. 盛勇,刘川福,赵亮,丁峰,唐斌,闵鹏. 塔里木盆地HT区块难钻白云岩地层提速技术. 化学工程与装备. 2023(05): 75-77 .
    11. 王勇军,聂德久,张涛,冯守涛,邸佳强,王磊,佟铮. 雄安新区D19地热勘探井钻探技术及成果. 钻探工程. 2023(S1): 299-304 .
    12. 吴泽兵,席凯凯,赵海超,黄海,张文超,杨晨娟. 仿生PDC齿旋转破岩时的温度场和破岩特性模拟研究. 石油钻探技术. 2022(02): 71-77 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (4436) PDF downloads (3978) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return