ZHOU Jianping, YANG Zhanwei, XU Minjie, WANG Liwei, YAO Maotang, GAO Ying. Research and Field Tests of Weighted Fracturing Fluids with Industrial Calcium Chloride and Guar Gum[J]. Petroleum Drilling Techniques, 2021, 49(2): 96-101. DOI: 10.11911/syztjs.2021014
Citation: ZHOU Jianping, YANG Zhanwei, XU Minjie, WANG Liwei, YAO Maotang, GAO Ying. Research and Field Tests of Weighted Fracturing Fluids with Industrial Calcium Chloride and Guar Gum[J]. Petroleum Drilling Techniques, 2021, 49(2): 96-101. DOI: 10.11911/syztjs.2021014

Research and Field Tests of Weighted Fracturing Fluids with Industrial Calcium Chloride and Guar Gum

More Information
  • Received Date: April 04, 2020
  • Revised Date: January 23, 2021
  • Available Online: February 26, 2021
  • To solve the problem of high cost and low weighting density in existing weighted fracturing fluid systems, a low-cost technology for weighting the fracturing fluid with industrial calcium chloride was developed. After analyzing the blocking mechanism of boron crosslinking agent in calcium chloride and guar gum base solution, a high-concentration calcium chloride-resistant crosslinker solution was developed. It has the advantage of being able to form crosslinked gel at low pH with high-concentration calcium chloride solution and guar gum base fluid. The industrial calcium chloride weighted guar gum fracturing fluid is characterized by its high weighting density, low base fluid viscosity, strong temperature and shear resistance. After the shearing at 140 °C and with a shearing rate of 100 s–1 for two hours, the gel viscosity was greater than 100 mPa·s. Field tests indicated that the operating pressure can be reduced by 10–15 MPa in ultra-deep wells by using the weighted fracturing fluid with calcium chloride and guar gum. The results showed that fracturing fluid has reliable performance, and could reduce the operational pressure in ultra deep and high stress reservoir reconstructions, and thereby improve the fracturing effect, which has the value of field popularization and application.
  • [1]
    李鹭光,何海清,范土芝,等. 中国石油油气勘探进展与上游业务发展战略[J]. 中国石油勘探,2020,25(1):1–10. doi: 10.3969/j.issn.1672-7703.2020.01.001

    LI Luguang, HE Haiqing, FAN Tuzhi, et al. Oil and gas exploration progress and upstream development strategy of CNPC[J]. China Petroleum Exploration, 2020, 25(1): 1–10. doi: 10.3969/j.issn.1672-7703.2020.01.001
    [2]
    张宁宁,王青,王建君,等. 近20年世界油气新发现特征与勘探趋势展望[J]. 中国石油勘探,2018,23(1):44–53. doi: 10.3969/j.issn.1672-7703.2018.01.005

    ZHANG Ningning, WANG Qing, WANG Jianjun, et al. Characteristics of oil and gas discoveries in recent 20 years and future exploration in the world[J]. China Petroleum Exploration, 2018, 23(1): 44–53. doi: 10.3969/j.issn.1672-7703.2018.01.005
    [3]
    张光亚,马锋,梁英波,等. 全球深层油气勘探领域及理论技术进展[J]. 石油学报,2015,36(9):1156–1166.

    ZHANG Guangya, MA Feng, LIANG Yingbo, et al. Domain and theory technology progress of global deep oil and gas exploration[J]. Acta Petrolei Sinica, 2015, 36(9): 1156–1166.
    [4]
    王招明,李勇,谢会文,等. 库车前陆盆地超深层大油气田形成的地质认识[J]. 中国石油勘探,2016,21(1):37–43. doi: 10.3969/j.issn.1672-7703.2016.01.004

    WANG Zhaoming, LI Yong, XIE Huiwen, et al. Geological understanding on the formation of large-scale ultra-deep oil-gas field in Kuqa foreland basin[J]. China Petroleum Exploration, 2016, 21(1): 37–43. doi: 10.3969/j.issn.1672-7703.2016.01.004
    [5]
    于京都,郑民,李建忠,等. 我国深层天然气资源潜力、勘探前景与有利方向[J]. 天然气地球科学,2018,29(10):1398–1408. doi: 10.11764/j.issn.1672-1926.2018.08.005

    YU Jingdu, ZHENG Min, LI Jianzhong, et al. Resource potential, explorative prospect and favorable direction for natural gas in deep formation of China[J]. Natural Gas Geoscience, 2018, 29(10): 1398–1408. doi: 10.11764/j.issn.1672-1926.2018.08.005
    [6]
    马开华,谷磊,叶海超. 深层油气勘探开发需求与尾管悬挂器技术进步[J]. 石油钻探技术,2019,47(3):34–40. doi: 10.11911/syztjs.2019055

    MA Kaihua, GU Lei, YE Haichao. The demands on deep oil/gas exploration & development and the technical advancement of liner hangers[J]. Petroleum Drilling Technology, 2019, 47(3): 34–40. doi: 10.11911/syztjs.2019055
    [7]
    郭建春,苟波,王坤杰,等. 川西下二叠统超深气井网络裂缝酸化优化设计[J]. 天然气工业,2017,37(6):34–41. doi: 10.3787/j.issn.1000-0976.2017.06.005

    GUO Jianchun, GOU Bo, WANG Kunjie, et al. An optimal design of network-fracture acidification for ultra-deep gas wells in the Lower Permian strata of the western Sichuan Basin[J]. Natural Gas Industry, 2017, 37(6): 34–41. doi: 10.3787/j.issn.1000-0976.2017.06.005
    [8]
    李熙喆,郭振华,胡勇,等. 中国超深层构造型大气田高效开发策略[J]. 石油勘探与开发,2018,45(1):111–118. doi: 10.1016/S1876-3804(18)30010-7

    LI Xizhe, GUO Zhenhua, HU Yong, et al. Efficient development strategies for large ultra-deep structural gas fields in China[J]. Petroleum Exploration and Development, 2018, 45(1): 111–118. doi: 10.1016/S1876-3804(18)30010-7
    [9]
    王学龙,何选蓬,刘先锋,等. 塔里木克深9气田复杂超深井钻井关键技术[J]. 石油钻探技术,2020,48(1):15–20. doi: 10.11911/syztjs.2020028

    WANG Xuelong, HE Xuanpeng, LIU Xianfeng, et al. Key drilling technologies for complex ultra-deep wells in the Tarim Keshen 9 Gas Field[J]. Petroleum Drilling Technology, 2020, 48(1): 15–20. doi: 10.11911/syztjs.2020028
    [10]
    YANG Xiaojiang, MAO Jincheng, ZHANG Wenlong, et al. Tertiary cross-linked and weighted fracturing fluid enables fracture stimulations in ultra high pressure and temperature reservoir[J]. Fuel, 2020, 268: 117222. doi: 10.1016/j.fuel.2020.117222
    [11]
    吕振虎,邬国栋,郑苗,等. 基于溶胀–熟化机理的疏水缔合聚合物速溶压裂液技术[J]. 石油钻探技术,2019,47(4):104–109. doi: 10.11911/syztjs.2019018

    LYU Zhenhu, WU Guodong, ZHENG Miao, et al. An instantly dissolving fracturing fluid technology using hydrophobic associating polymers based on swelling-curing mechanisms[J]. Petroleum Drilling Technology, 2019, 47(4): 104–109. doi: 10.11911/syztjs.2019018
    [12]
    程兴生,张福祥,徐敏杰,等. 低成本加重瓜胶压裂液的性能与应用[J]. 石油钻采工艺,2011,33(2):91–93. doi: 10.3969/j.issn.1000-7393.2011.02.023

    CHENG Xingsheng, ZHANG Fuxiang, XU Minjie, et al. Performance and application of weighted GHPG fracturing fluid with low cost[J]. Oil Drilling & Production Technology, 2011, 33(2): 91–93. doi: 10.3969/j.issn.1000-7393.2011.02.023
    [13]
    李传增, 张菅, 王现杰, 等.深海油田耐高温加重压裂液体系研究及性能评价[J].海洋工程装备与技术, 2019, 6(增刊1): 116-121.

    LI Chuanzeng, ZHANG Jian, WANG Xianjie, et al. Research and performance evaluation of high temperature weighted fracturing fluid system in deep sea oilfield[J]. Ocean Engineering Equipment and Technology, 2019, 6 (supplement 1): 116-121.
    [14]
    施建国,郭粉娟. 低摩阻加重压裂液体系研究及应用[J]. 石油化工应用,2020,39(9):74–78. doi: 10.3969/j.issn.1673-5285.2020.09.016

    SHI Jianguo, GUO Fenjuan. Research and application of low friction fracturing fluid system[J]. Petrochemical Industry Applications, 2020, 39(9): 74–78. doi: 10.3969/j.issn.1673-5285.2020.09.016
    [15]
    肖兵,张高群,陈波,等. NaCI、NaBr对HPG压裂液性能的影响[J]. 油田化学,2013,30(1):26–28.

    XIAO Bing, ZHANG Gaoqun, CHEN Bo, et al. Effect of NaCI and NaBr on the performance of fracturing fluid[J]. Oilfield Chemistry, 2013, 30(1): 26–28.
    [16]
    董永刚,张菅,裴海华. 耐高温NaBr加重压裂液的研究[J]. 当代化工,2016,45(3):441–443, 446. doi: 10.3969/j.issn.1671-0460.2016.03.001

    DONG Yonggang, ZHANG Jian, PEI Haihua. Research of heat-resistant sodium bromide weighted fracturing fluid[J]. Contemporary Chemical Industry, 2016, 45(3): 441–443, 446. doi: 10.3969/j.issn.1671-0460.2016.03.001
    [17]
    肖雯,张茂森,李晓倩,等. 加重压裂液体系优选[J]. 承德石油高等专科学校学报,2016,18(4):25–29. doi: 10.3969/j.issn.1008-9446.2016.04.007

    XIAO Wen, ZHANG Maosen, LI Xiaoqian, et al. Properties of heavy fracturing fluid system[J]. Journal of Chengde Petroleum College, 2016, 18(4): 25–29. doi: 10.3969/j.issn.1008-9446.2016.04.007
    [18]
    QIU Xiaoping, MARTCH W E, MORGENTHALER L N, et al. Design criteria and application of high-density brine-based fracturing fluid for deepwater frac packs[R]. SPE 124704, 2009.
    [19]
    任占春. 甲酸盐加重瓜胶压裂液体系[J]. 钻井液与完井液,2017,34(1):122–126. doi: 10.3969/j.issn.1001-5620.2017.01.023

    REN Zhanchun. Guar gum fracturing fluids weighted with formates[J]. Drilling Fluid & Completion Fluid, 2017, 34(1): 122–126. doi: 10.3969/j.issn.1001-5620.2017.01.023
    [20]
    王彦玲,张悦,刘飞,等. 复合无机盐加重压裂液研究[J]. 精细石油化工,2017,34(5):6–9. doi: 10.3969/j.issn.1003-9384.2017.05.002

    WANG Yanling, ZHANG Yue, LIU Fei, et al. Research of compound inorganic salt aggravating fracturing fluids[J]. Speciality Petrochemicals, 2017, 34(5): 6–9. doi: 10.3969/j.issn.1003-9384.2017.05.002
    [21]
    熊俊杰,赵战江,安琦,等. 硝酸钠加重海水基压裂液性能评价[J]. 油田化学,2019,36(1):43–47.

    XIONG Junjie, ZHAO Zhanjiang, AN Qi, et al. Performance evaluation of seawater-based fracturing fluid weighted by sodium nitrate[J]. Oilfield Chemistry, 2019, 36(1): 43–47.
  • Related Articles

    [1]WANG Guona, ZHANG Haijun, SUN Jingtao, ZHANG Wei, QU Dazi, HAO Chen. Optimization and Application of Efficient Drilling Technologies for Large-Scale Well Cluster Fields in Dagang Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 51-57. DOI: 10.11911/syztjs.2021116
    [2]ZHAO Bo, CHEN Erding. Drilling Technologies for Horizontal Shale Oil Well Fan Yeping 1 in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 53-58. DOI: 10.11911/syztjs.2021078
    [3]TIAN Fengjun, WANG Yungong, TANG Bin, LI Zhijun, LIU Keqiang. Drilling Technology for Long-Offset 3D Horizontal Shale Oil Wells in the Longdong Area of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 34-38. DOI: 10.11911/syztjs.2021079
    [4]ZHANG Xiong, YU Jin, MAO Jun, LIU Zulei. High-Performance Oil-Based Drilling Fluid Technology for Horizontal Wells in the Madong Oilfield, Junggar Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 21-27. DOI: 10.11911/syztjs.2020106
    [5]HU Zubiao, ZHANG Jianqing, WANG Qingchen, WU Fuping, HAN Chengfu, LIU Weirong. Drilling Fluid Technology for Ultra-Long Horizontal Section of Well Hua H50-7 in the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4): 28-36. DOI: 10.11911/syztjs.2020050
    [6]YANG Can, WANG Peng, RAO Kaibo, LIN Yushui, LI Wei, YE Shunyou. Key Technologies for Drilling Horizontal Shale Oil Wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 34-41. DOI: 10.11911/syztjs.2020036
    [7]LIU Weirong, NI Huafeng, WANG Xuefeng, SHI Zhongyuan, TAN Xuebin, WANG Qingchen. Shale Oil Horizontal Drilling Technology with Super-Long Horizontal Laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9-14. DOI: 10.11911/syztjs.2020029
    [8]GUO Yongbin, GUAN Shen, LIU Zhiqin, PENG Wei, CAO Feng. Solid-Free Organic Salt Drilling Fluid for Horizontal Wells in the Weizhou 12-1 Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 31-36. DOI: 10.11911/syztjs.201706006
    [9]Hou Jie, Liu Yonggui, Li Hai. Application of High-Performance Water-Based Drilling Fluid for Horizontal Wells in Tight Reservoirs of Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(4): 59-65. DOI: 10.11911/syztjs.201504011
    [10]Wei Dianju, Jin Junbin, He Qingshui. Fluid Technology for Drilling Horizontal Wells in the High Permeability Carbonate Reservoir of the YD Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(3): 23-28. DOI: 10.11911/syztjs.201503005
  • Cited by

    Periodical cited type(6)

    1. 聂志宏,徐凤银,时小松,熊先钺,宋伟,张雷,刘莹,孙伟,冯延青,刘世瑞,闫霞,孙潇逸,吴满生. 鄂尔多斯盆地东缘深部煤层气开发先导试验效果与启示. 煤田地质与勘探. 2024(02): 1-12 .
    2. 刘易. 丛式井勘探开发集约解决单井场运行成本高难题. 石油钻采工艺. 2024(02): 164-174+188 .
    3. 崔春兰,董振国,吴德山. 新街台格庙矿区煤层气参数井钻井关键技术. 煤田地质与勘探. 2019(S1): 128-134 .
    4. 闫联国,徐壁华. 延川南煤气层气固井低密度水泥浆技术研究. 内蒙古石油化工. 2017(02): 54-58 .
    5. 薛江云,刘双林. 煤层气抽采及高效利用技术探究及应用. 化工管理. 2016(28): 149 .
    6. 王运海. 延川南区块煤层气丛式井钻完井工艺技术. 煤炭科学技术. 2016(05): 23-29 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (626) PDF downloads (86) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return