ZHU Zuyang, NI Weining, ZHANG Wei, MI Jintai, ZHENG Yiting. The Development of an Integrated Logging Instrument Platform while Drilling[J]. Petroleum Drilling Techniques, 2019, 47(1): 118-126. DOI: 10.11911/syztjs.2019016
Citation: ZHU Zuyang, NI Weining, ZHANG Wei, MI Jintai, ZHENG Yiting. The Development of an Integrated Logging Instrument Platform while Drilling[J]. Petroleum Drilling Techniques, 2019, 47(1): 118-126. DOI: 10.11911/syztjs.2019016

The Development of an Integrated Logging Instrument Platform while Drilling

More Information
  • Received Date: June 28, 2018
  • Revised Date: December 02, 2018
  • Available Online: January 16, 2019
  • The goals were to detect characteristics of of multi-depth formations and evaluate mud intrusion as well as identify the formation lithology. To that end, researchers developed an integrated logging instrument platform while drilling capable of multi-parameter measurement such as resistivity and Gamma. According to the measurement methods like phase shift resistivity, attenuation resistivity, total Gamma and imaging Gamma, an eight-coil design (six senders and two receivers) was adopted, and the sensors such as Gamma probes, accelerometers, and fluxgates were attached. Meanwhile, the modular circuit design scheme consisting of transmitting circuit, receiving circuit and control circuit was applied. Researchers then defined the bus communication protocol to establish the information transmission among various functional modules. The firmware program for the logging instrument platform has been developed, which can not only measures the phase shift resistivity and attenuation resistivity data, but also measure the Gamma data and formation azimuth information. The test software for the platform has been developed to calibrate the instrument and enable the startup setting prior to running in hole, realize the issuing of control commands and upload the measurement data, and monitor and graphically process data such as resistivity, Gamma, inclination angle, and tool face. This integrated logging instrument platform could provide abundant high-quality logging data for high-angle well and horizontal well drilling, and acquire necessary data for formation evaluation, so as to provide technical support and best practices for the development of unconventional oil and gas reservoirs.

  • [1]
    秦绪英, 肖立志, 索佰峰. 随钻测井技术最新进展及其应用[J]. 勘探地球物理进展, 2003, 26(4): 313–322 http://d.old.wanfangdata.com.cn/Periodical/ktdqwljz200304015

    QIN Xuying, XIAO Lizhi, SUO Baifeng. The development of logging while drilling and its application[J]. Progress in Exploration Geophysics, 2003, 26(4): 313–322 http://d.old.wanfangdata.com.cn/Periodical/ktdqwljz200304015
    [2]
    张辛耘, 王敬农, 郭彦军. 随钻测井技术进展和发展趋势[J]. 测井技术, 2006, 30(1): 10–15 doi: 10.3969/j.issn.1004-1338.2006.01.002

    ZHANG Xinyun, WANG Jingnong, GUO Yanjun. Advances and trends in logging while drilling technology[J]. Well Logging Technology, 2006, 30(1): 10–15 doi: 10.3969/j.issn.1004-1338.2006.01.002
    [3]
    赵平, 郭永旭, 张秋海. 随钻测井技术新进展[J]. 国外测井技术, 2013, 34(2): 7–17 http://d.old.wanfangdata.com.cn/Periodical/kjzxdb201003044

    ZHAO Ping, GUO Yongxu, ZHANG Qiuhai. Recent advances in logging while drilling[J]. World Well Logging Technology, 2013, 34(2): 7–17 http://d.old.wanfangdata.com.cn/Periodical/kjzxdb201003044
    [4]
    李洪强, 丁景丽, 林楠, 等. 随钻伽马测量数据处理方法的研究及应用[J]. 石油钻探技术, 2008, 36(4): 12–14 doi: 10.3969/j.issn.1001-0890.2008.04.003

    LI Hongqiang, DING Jingli, LIN Nan, et al. Research and application of data processing in gamma ray logging while drilling[J]. Petroleum Drilling Techniques, 2008, 36(4): 12–14 doi: 10.3969/j.issn.1001-0890.2008.04.003
    [5]
    骆庆锋, 李安宗, 陈鹏, 等. 一种随钻伽马成像数据处理方法: CN201510927599.8 [P]. 2015-12-14.

    LUO Qingfeng, LI Anzong, CHEN Peng, et al. A data processing method of gamma imaging while drilling: CN201510927599.8[P]. 2015-12-14.
    [6]
    吴文圣, 李梦婷. 随钻伽马成像测井方位分辨率计算方法及装置与流程: CN201810292102.3[P]. 2018-04-03.

    WU Wensheng, LI Mengting. Azimuth resolution calculation method and device for gamma imaging logging while drilling: CN201810292102.3[P]. 2018-04-03.
    [7]
    XU Libai. Method for correcting natural gamma ray logging measurements: US15248962 [P]. 2016-08-26.
    [8]
    史晓锋, 李铮, 蔡志权. 随钻电磁波传播电阻率测量工具探测深度研究[J]. 测井技术, 2002, 26(2): 113–117 doi: 10.3969/j.issn.1004-1338.2002.02.007

    SHI Xiaofeng, LI Zheng, CAI Zhiquan. Inversion depth of MWD propagation resistivity logging[J]. Well Logging Technology, 2002, 26(2): 113–117 doi: 10.3969/j.issn.1004-1338.2002.02.007
    [9]
    黄忠富, 黄瑞光, 陈鹏. 随钻电阻率测井仪器的实现[J]. 测井技术, 2002, 26(2): 172–175 doi: 10.3969/j.issn.1004-1338.2002.02.022

    HUANG Zhongfu, HUANG Ruiguang, CHEN Peng. Development of MWD resistivity logging tool[J]. Well Logging Technology, 2002, 26(2): 172–175 doi: 10.3969/j.issn.1004-1338.2002.02.022
    [10]
    杨震, 肖红兵, 李翠. 随钻方位电磁波仪器测量精度对电阻率及界面预测影响分析[J]. 石油钻探技术, 2017, 45(4): 115–120 http://d.old.wanfangdata.com.cn/Periodical/syztjs201704020

    YANG Zhen, XIAO Hongbing, LI Cui. Impacts of accuracy of azimuthal electromagnetic logging-while-drilling on resistivity and interface prediction[J]. Petroleum Drilling Techniques, 2017, 45(4): 115–120 http://d.old.wanfangdata.com.cn/Periodical/syztjs201704020
    [11]
    刘乃震, 王忠, 刘策. 随钻电磁波传播方位电阻率仪地质导向关键技术[J]. 地球物理学报, 2015, 58(5): 1767–1775 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505026.htm

    LIU Naizhen, WANG Zhong, LIU Ce. Theories and key techniques of directional electromagnetic propagation resistivity tool for geosteering applications while drilling[J]. Chinese Journal of Geophysics, 2015, 58(5): 1767–1775 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505026.htm
    [12]
    倪卫宁, 张晓彬, 万勇, 等. 随钻方位电磁波电阻率测井仪分段组合线圈系设计[J]. 石油钻探技术, 2017, 45(2): 115–120 http://d.old.wanfangdata.com.cn/Periodical/syztjs201702019

    NI Weining, ZHANG Xiaobin, WAN Yong, et al. The design of the coil system in LWD tools based on azimuthal electromagnetic-wave resistivity combined with sections[J]. Petroleum Drilling Techniques, 2017, 45(2): 115–120 http://d.old.wanfangdata.com.cn/Periodical/syztjs201702019
    [13]
    王磊, 范宜仁, 邢涛, 等. 基于随钻电磁波测井资料的地层各向异性电阻率提取方法: CN201711336574.6 [P]. 2017-12-14.

    WANG Lei, FAN Yiren, XING Tao, et al. Extraction of formation anisotropic resistivity based on electromagnetic logging while dril-ling data: CN201711336574.6[P]. 2017-12-14.
    [14]
    杨锦舟, 肖红兵, 杨全进, 等. 一种随钻电阻率近钻头测量装置: CN201310003353.2 [P]. 2013-01-06.

    YANG Jinzhou, XIAO Hongbing, YANG Quanjin, et al. A near bit me-asuring device for resistivity while drilling: CN201310003353.2[P]. 2013-01-06.
    [15]
    WANG Tsili. Apparatus and method for microresistivity imaging in which transmitter coil and receiver coil axes are substantially per-pendicular to the longitudinal axis of the tool body: US13819122[P]. 2011-08-26.
  • Related Articles

    [1]WANG Zhiyuan, LIU Hui, SUN Baojiang, LIU Hongtao, LOU Wenqiang. Numerical Study on Drilling Fluid Lost Circulation under Fluid-Solid Coupling in Deep Fractured Gas Reservoir[J]. Petroleum Drilling Techniques, 2025, 53(2): 52-61. DOI: 10.11911/syztjs.2025031
    [2]ZHANG Yiqun, HU Xiao, WU Xiaoya, LI Gensheng, TIAN Shouceng, ZHAO Shuai. Experimental and Numerical Simulation Study of Natural Gas Hydrate Erosion by Swirling Jet[J]. Petroleum Drilling Techniques, 2022, 50(3): 24-33. DOI: 10.11911/syztjs.2022046
    [3]XIAN Yuxi, CHEN Chaofeng, FENG Meng, HAO Youzhi. Numerical Simulation of Multiphase Flow in Fracture Networks in Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(5): 94-100. DOI: 10.11911/syztjs.2021090
    [4]YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
    [5]Chen Xiuping, Zou Deyong, Li Dongjie, Lou Erbiao. Numerical Simulation Study on the Anti-Balling Performance of PDC Drill Bits[J]. Petroleum Drilling Techniques, 2015, 43(6): 108-113. DOI: 10.11911/syztjs.201506020
    [6]Zhao Xinxin, Wu Xuefeng, Gao Yonghai, Li Hao, Guo Yanli. Numerical Simulation of Temperature Distribution of Blowout Preventers in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 46-50. DOI: 10.3969/j.issn.1001-0890.2013.03.009
    [7]Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013
    [8]Shen Haichao, Cheng Yuanfang, Hu Xiaoqing. Numerical Simulation of Near Wellbore Reservoir Stability during Gas Hydrate Production by Depressurization[J]. Petroleum Drilling Techniques, 2012, 40(2): 76-81. DOI: 10.3969/j.issn.1001-0890.2012.02.015
    [9]Li Hongqian. Numerical Simulation on the Annular Flow Induced by Spiral Casing Centralizer[J]. Petroleum Drilling Techniques, 2012, 40(2): 25-29. DOI: 10.3969/j.issn.1001-0890.2012.02.005
    [10]Li Chunying, Wu Xiaodong. Numerical Simulation of Remaining Oil Distribution in Cyclothem[J]. Petroleum Drilling Techniques, 2012, 40(1): 88-91. DOI: 10.3969/j.issn.1001-0890.2012.01.018
  • Cited by

    Periodical cited type(4)

    1. 刘西恩,孙志峰,仇傲,李杰,罗博,彭凯旋,罗瑜林. 随钻四极子声波测井仪的设计及试验. 石油钻探技术. 2022(03): 125-131 . 本站查看
    2. 孙志峰,仇傲,金亚,李杰,罗博,彭凯旋. 随钻多极子声波测井仪接收声系的优化设计与试验. 石油钻探技术. 2022(04): 114-120 . 本站查看
    3. 李杰,刘西恩,罗博,孙志峰,仇傲,罗瑜林. 国产随钻单极声波测井仪的设计及应用. 石油管材与仪器. 2022(06): 38-43 .
    4. 米金泰,周珺,朱祖扬,李新,李丰波. 随钻声波仪器刻槽钻铤结构分析. 石油化工应用. 2018(02): 58-62 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (11675) PDF downloads (103) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return