YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
Citation: YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018

Numerical Simulation for Flow Conductivity in Channeling Fractures

More Information
  • Received Date: August 09, 2016
  • Revised Date: October 13, 2016
  • To determine the conductivity of channeling fractures under field conditions and to identify factors that may affect such conductivity, a fluid flow model has been established in accordance with distribution of fractured sand bars. In addition, a numerical simulation has been performed to determine flow patterns of fluids in certain fracture and to calculate conductivity of such fractures. Research results showed that structures and distribution of pore channels in channeling fractures were key factors that might affect the conductivity of fractures. In the case that no continuous large channels were generated, or such major channels collapsed to generate dispersedly distributed pore structures, fluids in the fracture might encounter significant flow resistance. Under such circumstances, conductivities of channeling fractures might be reduced significantly. Relevant research results might provide a solid foundation to enhance conductivity of channeling fractures.
  • [1]
    李庆辉,陈勉,金衍,等.新型压裂技术在页岩气开发中的应用[J].特种油气藏,2012,19(6):1-7. LI Qinghui,CHEN Mian,JIN Yan,et al.Application of new fracturing technologies in shale gas development[J].Special Oil & Gas Reservoirs,2012,19(6):1-7.
    [2]
    刘向军.高速通道压裂工艺在低渗透油藏的应用[J].油气地质与采收率,2015,22(2):122-126. LIU Xiangjun.Application of hiway technology in the low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2015,22(2):122-126.
    [3]
    钟森,任山,黄禹忠,等.高速通道压裂技术在国外的研究与应用[J].中外能源,2012,17(6):39-42. ZHONG Sen,REN Shan,HUANG Yuzhong,et al.Research and application of channel fracturing technique in foreign oil and gas field[J].Sino-Global Energy,2012,17(6):39-42.
    [4]
    GILLARD M R,MEDVEDEV O O,HOSEIN P R,et al.A new approach to generating fracture conductivity[R].SPE 135034,2010.
    [5]
    AHMED M,HUSSAIN A,AHMED M.Optimizing production of tight gas wells by revolutionizing hydraulic fracturing[R].SPE 171408,2011.
    [6]
    MEDVEDEV A V,KRAEMER C C,PENA A A,et al.On the mechanisms of channel fracturing[R].SPE 163836,2013.
    [7]
    曲占庆,周丽萍,曲冠政,等.高速通道压裂支撑裂缝导流能力实验评价[J].油气地质与采收率,2015,22(1):122-126. QU Zhanqing,ZHOU Liping,QU Guanzheng,et al.Experimental evaluation on influencing factors of flow conductivity for channel fracturing proppant[J].Petroleum Geology and Recovery Efficiency,2015,22(1):122-126.
    [8]
    许国庆,张士诚,王雷,等.通道压裂支撑裂缝影响因素分析[J].断块油气田,2015,22(4):534-537. XU Guoqing,ZHANG Shicheng,WANG Lei,et al.Infleuence factors analysis of proppant fracture in channel fracturing[J].Fault-Block Oil & Gas Field,2015,22(4):534-537.
    [9]
    MEAKIN P,TARTAKOVSKY A M.Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media[J].Reviews of Geophysics,2009,47(3):4288-4309.
    [10]
    吴国涛,胥云,杨振周,等.考虑支撑剂及其嵌入程度对支撑裂缝导流能力影响的数值模拟[J].天然气工业,2013,33(5):65-68. WU Guotao,XU Yun,YANG Zhenzhou,et al.Numerical simulation considering the impact of proppant and its embedment degree on fracture flow conductivity[J].Natural Gas Industry,2013,33(5):65-68.
    [11]
    赵金洲,李志强,胡永全,等.考虑页岩储层微观渗流的压裂产能数值模拟[J].天然气工业,2015,35(6):53-58. ZHAO Jinzhou,LI Zhiqiang,HU Yongquan,et al.Numerical simulation of productivity after fracturing with consideration to micro-seepage in shale reservoirs[J].Natural Gas Industry,2015,35(6):53-58.
    [12]
    杨正明,张松,张训华,等.气井压后稳态产能公式和压裂数值模拟研究[J].天然气工业,2003,23(4):74-76. YANG Zhengming,ZHANG Song,ZHANG Xunhua,et al.The steady-state productivity formula after fracturing for gas wells and fracturing numerical simulation[J].Natural Gas Industry,2003,23(4):74-76.
    [13]
    DRANCHUK P M,ABOU-KASSEM H.Calculation of Z factors for natural gases using equations of state[J].Journal of Canadian Petroleum Technology,1975,14(3):34-36.
    [14]
    WILKE C R.A viscosity equation for gas mixtures[J].The Journal of Chemical Physics,1950,18(4):517-519.
    [15]
    COOK D,DOWNING K,BAYER S,et al.Unconventional-asset-development work flow in the Eagle Ford Shale[R].SPE 168973,2014.
    [16]
    张建国,杜殿发,侯健,等.油气层渗流力学[M].东营:石油大学出版社,1998:27-29. ZHANG Jianguo,DU Dianfa,HOU Jian,et al.Reservoir seepage mechanics[M].Dongying:Petroleum University Press,1998:27-29.
    [17]
    MEYER B R,BAZAN L W.A discrete fracture network model for hydraulically induced fractures-theory,parametric and case studies[R].SPE 140514,2011.
  • Related Articles

    [1]ZENG Yijin, WANG Minsheng, GUANG Xinjun, WANG Guo, ZHANG Hongbao, CHEN Zengwei, DUAN Jinan. Progress and Prospects of Sinopec’s Intelligent Drilling Technologies[J]. Petroleum Drilling Techniques, 2024, 52(5): 1-9. DOI: 10.11911/syztjs.2024081
    [2]ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, BI Yantao. New Progress and Prospects for Sinopec’s Petroleum Engineering Technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 149-158. DOI: 10.11911/syztjs.2023021
    [3]ZENG Yijin. Novel Advancements and Development Suggestions of Cementing Technologies for Deep and Ultra-Deep Wells of Sinopec[J]. Petroleum Drilling Techniques, 2023, 51(4): 66-73. DOI: 10.11911/syztjs.2023035
    [4]LU Baoping. New Progress and Development Proposals of Sinopec’s PetroleumEngineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1-10. DOI: 10.11911/syztjs.2021001
    [5]ZHANG Jinhong. Current Status and Outlook for the Development of Sinopec’s Petroleum Engineering Technologies[J]. Petroleum Drilling Techniques, 2019, 47(3): 9-17. DOI: 10.11911/syztjs.2019061
    [6]MA Kaihua, HOU Lizhong, ZHANG Hongbao. Drilling Completion Technologies of Sinopec Overseas Oilfields: Status Quo of Technology Development Suggestions[J]. Petroleum Drilling Techniques, 2018, 46(5): 1-7. DOI: 10.11911/syztjs.2018128
    [7]LI Yang, XUE Zhaojie. Challenges and Development Tendency of Engineering Technology in Oil and Gas Development in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(1): 1-5. DOI: 10.11911/syztjs.201601001
    [8]Li Yang. Opportunities and Challenges for Sinopec to Develop Tight Oil Reservoirs[J]. Petroleum Drilling Techniques, 2015, 43(5): 1-6. DOI: 10.11911/syztjs.201505001
    [9]Lin Yongxue, Wang Xianguang. Development and Reflection of Oil-Based Drilling Fluid Technology for Shale Gas of Sinopec[J]. Petroleum Drilling Techniques, 2014, 42(4): 7-13. DOI: 10.3969/j.issn.1001-0890.2014.04.002
    [10]Yan Guangqing, Zhang Jincheng. Status and Proposal of the Sinopec Ultra-Deep Drilling Technology[J]. Petroleum Drilling Techniques, 2013, 41(2): 1-6. DOI: 10.3969/j.issn.1001-0890.2013.02.001
  • Cited by

    Periodical cited type(4)

    1. 刘西恩,孙志峰,仇傲,李杰,罗博,彭凯旋,罗瑜林. 随钻四极子声波测井仪的设计及试验. 石油钻探技术. 2022(03): 125-131 . 本站查看
    2. 孙志峰,仇傲,金亚,李杰,罗博,彭凯旋. 随钻多极子声波测井仪接收声系的优化设计与试验. 石油钻探技术. 2022(04): 114-120 . 本站查看
    3. 李杰,刘西恩,罗博,孙志峰,仇傲,罗瑜林. 国产随钻单极声波测井仪的设计及应用. 石油管材与仪器. 2022(06): 38-43 .
    4. 吴金平,陆黄生,朱祖扬,张卫. 随钻声波测井声系短节模拟样机试验研究. 石油钻探技术. 2016(02): 106-111 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (8761) PDF downloads (13475) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return