Li Hongqian. Numerical Simulation on the Annular Flow Induced by Spiral Casing Centralizer[J]. Petroleum Drilling Techniques, 2012, 40(2): 25-29. DOI: 10.3969/j.issn.1001-0890.2012.02.005
Citation: Li Hongqian. Numerical Simulation on the Annular Flow Induced by Spiral Casing Centralizer[J]. Petroleum Drilling Techniques, 2012, 40(2): 25-29. DOI: 10.3969/j.issn.1001-0890.2012.02.005

Numerical Simulation on the Annular Flow Induced by Spiral Casing Centralizer

More Information
  • Received Date: September 15, 2011
  • Revised Date: February 17, 2012
  • It is necessary to analyze the annular flow law induced by spiral casing centralizer in order to properly determine the location of spiral casing centralizer and improve slurry displacement efficiency,which will be meaningful to cementing optimization.Based on annular fluid dynamics,the theoretical model of the flow field in annulus was established,the annular flow induced by spiral casing centralizer was analyzed and the numerical calculation results was verified by using the experimental result.These results matched well with the laser velocity measurement data,showing that the finite element analytical method is reliable.By using ANSYS software,the annular flow and effective whirl flowing length were calculated under different conditions,and the effects of spiral angle of casing centralizer,yield stress and flow rate to whirl velocity were analyzed.The results of numerical simulation indicate that the whirl velocity and the effective whirl flowing length are strongly influenced by spiral angle of casing centralizer and flow rate,which would be an essential consideration for optimizing the location of spiral casing centralizer.
  • [1]
    陈道元,刘光树,杨全盛,等.套管旋流扶正器的研制与应用[J].石油钻探技术,1994,22(1):61-63. Chen Daoyuan,Liu Guangshu,Yang Quansheng,et al.Development of spiral casing centralizer and its application[J].Petroleum Drilling Techniques,1994,22(1):61-63.
    [2]
    蒋世全,施太和.偏心环空层流螺旋流动的近似解析解[J].水动力学研究与进展:A辑,1995,10(5):560-565. Jiang Shiquan,Shi Taihe.An analytic solution of spiral flow in an eccentric annulus[J].Journal of Hydrodynamics:Series A,1995,10(5):560-565.
    [3]
    李成林,张景富,王忠福,等.实验确定旋流扶正器在环空中产生的旋流长度[J].石油钻探技术,1994,22(4):47-49,57. Li Chenglin,Zhang Jingfu,Wang Zhongfu,et al.Lab determination of annular whirl flow length generated by whirl flow casing centralizer[J].Petroleum Drilling Techniques,1994,22(4):47-49,57.
    [4]
    郑应人.非牛顿液体环空螺旋流的精确解[J].石油学报,1998,19(2):91-96. Zheng Yingren.Exact solution of helical flow for non-Newtonian fluid in annulus[J].Acta Petrolei Sinica,1998,19(2):91-96.
    [5]
    祝效华,吴爱民,于万龙,等.螺杆钻具水帽动力学分析及结构改进[J].石油钻探技术,2008,36(2):51-53. Zhu Xiaohua,Wu Aimin,Yu Wanlong,et al.CFD analysis and structure optimization on drive shaft connector of mud motor[J].Petroleum Drilling Techniques,2008,36(2):51-53.
    [6]
    王耀锋,李军强,杨小辉.套管-水泥环-地层系统应力分布规律研究[J].石油钻探技术,2008,36(5):7-11. Wang Yaofeng,Li Junqiang,Yang Xiaohui.Stress distribution in casing-cement-stratum[J].Petroleum Drilling Techniques,2008,36(5):7-11.
    [7]
    王建军,陆明万,张雄.流体力学Petrov-Galerkin有限元法研究进展[J].计算力学学报,1998,115(4):495-502. Wang Jianjun,Lu Mingwan,Zhang Xiong.Research progress in Petrov-Galerkin finite element methods for fluid mechanics:a review[J].Chinese Journal of Computational Mechanics,1998,115(4):495-502.
    [8]
    Zienkiewicz O C,Taylor R L,Nithiarasu P.The finite element method for fluid dynamics[M].6th ed.Amsterdam:Elsevier,2005:56-58.
    [9]
    Wammes W J A,Mechielse S J,Westerterp K R.The influence of pressure on the liquid hold-up in a cocurrent gas-liquid trickle-bed reactor operating at low gas velocities[J].Chemical Engineering Science,1991,46(2):409-417.
    [10]
    Fordham E J,Bittleston S H,Tehrani M A.Viscoplastic flow in centered annuli pipes and slots[J].Industrial and Engineering Chemistry Research,1991,30(3):517-524.
    [11]
    韩向科,钱若军,袁行飞,等.改进的基于特征线理论的流体力学有限元法[J].西安交通大学学报,2011,45(7):112-117. Han Xiangke,Qian Ruojun,Yuan Xingfei,et al.Improved characteristic-based split finite element method for fluid dynamics[J].Journal of Xi’an Jiaotong University,2011,45(7):112-117.
    [12]
    韩式方.非牛顿流体本构方程理论和计算解析理论[M].北京:科学出版社,2000:91-122. Han Shifang.The constitutive equation of non-Newtonian fluid and analytic theory of calculation[M].Beijing:Science Press,2000:91-122.
    [13]
    潘忠诚.数学物理方法教程[M].天津:南开大学出版社,1993:317-341. Pan Zhongcheng.Course of mathematics and physics method[M].Tianjin:Nankai University Press,1993:317-341.
    [14]
    崔海清,孙智,高涛.非Newtonian流体在内管做轴向往复运动的偏心环空内的速度分布[J].水动力研究与进展:A辑,2003,18(6):711-715. Cui Haiqing,Sun Zhi,Gao Tao.Velocity distribution of unsteady flow of non-Newtonian fluid in eccentric annul with the inner cylinder reciprocating axially[J].Journal of Hydrodynamics:Series A,2003,18(6):711-715.
    [15]
    Hanks R W,Larsen K M.The flow of power-law non-Newtonian fluids in concentric annuli[J].Industrial and Engineering Chemistry Fundamentals,1979,18(1):33-35.

Catalog

    Article Metrics

    Article views (2866) PDF downloads (3302) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return