GUO Jianchun, REN Wenxi, ZENG Fanhui, et al. Unconventional oil and gas well fracturing parameter intelligent optimization: research progress and future development prospects [J]. Petroleum Drilling Techniques,2023, 51(5):1-7. DOI: 10.11911/syztjs.2023097
Citation: GUO Jianchun, REN Wenxi, ZENG Fanhui, et al. Unconventional oil and gas well fracturing parameter intelligent optimization: research progress and future development prospects [J]. Petroleum Drilling Techniques,2023, 51(5):1-7. DOI: 10.11911/syztjs.2023097

Unconventional Oil and Gas Well Fracturing Parameter Intelligent Optimization: Research Progress and Future Development Prospects

More Information
  • Received Date: September 03, 2023
  • Available Online: September 20, 2023
  • Unconventional oil and gas reservoirs are characterized by strong heterogeneity, low porosity, and low permeability, and unconventional oil and gas wells need to be fractured to produce. Compared with conventional oil and gas reservoirs, unconventional oil and gas reservoirs have more complex engineering geology condition, which poses a challenge to the traditional fracturing parameter optimization methods. Artificial intelligence can provide solutions to problems that are difficult to solve with traditional methods, so artificial intelligence have been introduced into the optimization of fracturing parameters of unconventional oil and gas wells. In order to promote the rapid development of intelligent fracturing theory and technology, the research progress of intelligent optimization of fracturing parameters for unconventional oil and gas wells was systematically introduced, which mainly including the determination of the optimization objective of fracturing parameters, the establishment of the mapping relationship between fracturing parameters and fracturing effect, and the solution of the optimal fracturing parameter combination, etc. It was also proposed that the intelligent optimization of fracturing parameters for unconventional oil and gas wells should be mainly developed in three directions: real-time acquisition and transmission of downhole fracturing data based on optical fiber, physics-data synergy fracture propagation-production dynamic simulation, as well as intelligent optimization of fracturing parameters and real-time control integrated system.

  • [1]
    窦宏恩,张蕾,米兰,等. 人工智能在全球油气工业领域的应用现状与前景展望[J]. 石油钻采工艺,2021,43(4):405–419.

    DOU Hongen, ZHANG Lei, MI Lan, et al. The application status and prospect of artificial intelligence in the global oil and gas in dustry[J]. Oil Drilling & Production Technology, 2021, 43(4): 405–419.
    [2]
    盛茂,张家麟,张彦军,等. 基于数据驱动的水平井暂堵压裂有效性评价新模型[J]. 天然气工业,2023,43(9):132–140.

    SHENG Mao, ZHANG Jialin, ZHANG Yanjun, et al. A new data-driven effectiveness evaluation model of temporary plugging fracturing for horizontal wells[J]. Natural Gas Industry, 2023, 43(9): 132–140.
    [3]
    李根生,宋先知,祝兆鹏,等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术,2023,51(4):35–47.

    LI Gensheng, SONG Xianzhi, ZHU Zhaopeng, et al. Research progress and the prospect of intelligent drilling and completion technologies [J]. Petroleum Drilling Techniques, 2023, 51(4): 35–47.
    [4]
    崔奕,汪海阁,丁燕,等. 碳中和愿景下油气钻井的数字化、智能化转型之路[J]. 石油钻采工艺,2022,44(6):769–776.

    CUI Yi, WANG Haige, DING Yan, et al. Routes of digital and intelligent transformation for petroleum drilling with a vision of carbon neutrality[J]. Oil Drilling & Production Technology, 2022, 44(6): 769–776.
    [5]
    张世昆,陈作. 人工智能在压裂技术中的应用现状及前景展望[J]. 石油钻探技术,2023,51(1):69–77.

    ZHANG Shikun, CHEN Zuo. Status and prospect of artificial intelligence application in fracturing technology[J]. Petroleum Drilling Techniques, 2023, 51(1): 69–77.
    [6]
    葛亮, 滕怡, 肖国清,等. 基于井下环空参数的溢流智能预警技术研究[J]. 西南石油大学学报(自然科学版),2023,45(2):126–134.

    GE Liang, TENG Yi, XIAO Guoqing, et al. Research on over flow intelligent warning technology based on downhole annulus parameters[J]. Journal of Southwest Petroleum University( Science & Technology Edition), 2023, 45(2): 126–134.
    [7]
    蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势[J]. 石油钻探技术,2022,50(3):1–9.

    JIANG Tingxue, ZHOU Jun, LIAO Lulu. Development status and future trends of intelligent fracturing technologies[J]. Petroleum Drilling Techniques, 2022, 50(3): 1–9.
    [8]
    王敏生,光新军,耿黎东. 人工智能在钻井工程中的应用现状与发展建议[J]. 石油钻采工艺,2021,43(4):420–427.

    WANG Minsheng, GUANG Xinjun, GENG Lidong. Application status and development suggestions of artificial intelligence in drilling engineering[J]. Oil Drilling & Production Technology, 2021, 43(4): 420–427.
    [9]
    杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13.

    YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13.
    [10]
    吴泽兵,谷亚冰,姜雯,等. 基于遗传优化算法的井底钻压智能预测模型[J]. 石油钻采工艺,2023,45(2):151–159.

    WU Zebing, GU Yabing, JIANG Wen, et al. Intelligent prediction models of downhole weight on bit based on genetic optimization algorithm[J]. Oil Drilling & Production Technology, 2023, 45(2): 151–159.
    [11]
    孙翰文,费繁旭,高阳,等. 吉木萨尔陆相页岩水平井压裂后产量影响因素分析[J]. 特种油气藏,2020,27(2):108–114.

    SUN Hanwen, FEI Fanxu, GAO Yang, et al. Production sensitivity analysis of fractured horizontal wells in Jimusar continental shale[J]. Special Oil & Gas Reservoirs, 2020, 27(2): 108–114.
    [12]
    常青,李青一,赵鹏,等. 镧系金属示踪剂的研制及其在苏里格地区的应用 [J]. 钻井液与完井液,2018,35(3):114–118.

    CHANG Qing, LI Qingyi, ZHAO Peng, et al. Lanthanide series metal tracers: development and application in Sulige Area[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 114–118.
    [13]
    张矿生,唐梅荣,陶亮,等. 庆城油田页岩油水平井压增渗一体化体积压裂技术[J]. 石油钻探技术,2022,50(2):9–15.

    ZHANG Kuangsheng, TANG Meirong, TAO Liang, et al. Horizontal well volumetric fracturing technology integrating fracturing, energy enhancement, and imbibition for shale oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9–15.
    [14]
    习传学,高东伟,陈新安,等. 涪陵页岩气田西南区块压裂改造工艺现场试验[J]. 特种油气藏,2018,25(1):108–114.

    XI Chuanxue, GAO Dongwei, CHEN Xin'an, et al. Field test of fracturing technology in the southwest section of Fuling Shale Gas Field[J]. Special Oil & Gas Reservoirs, 2018, 25(1): 108–114.
    [15]
    李宗田,肖勇,李宁,等. 低油价下的页岩油气开发工程技术新进展[J]. 断块油气田,2021,28(5):577–585.

    LI Zongtian,XIAO Yong,LI Ning,et al. New progress in shale oil and gas development engineering technology under low oil prices[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 577–585.
    [16]
    刘红磊,周林波,陈作,等. 中国石化页岩气电动压裂技术现状及发展建议[J]. 石油钻探技术,2023,51(1):62–68.

    LIU Honglei, ZHOU Linbo, CHEN Zuo, et al. The up-to-date electric shale gas fracturing technologies of Sinopec and suggestions for further improvements[J]. Petroleum Drilling Technique, 2023, 51(1): 62–68.
    [17]
    REN Wenxi, LI Gensheng, TIAN Shouceng, et al. Adsorption and surface diffusion of supercritical methane in shale[J]. Industrial and Engineering Chemistry Research, 2017, 56(12): 3446–3455. doi: 10.1021/acs.iecr.6b04432
    [18]
    WU Keliu, CHEN Zhangxin, LI Xiangfang. Real gas transport through nanopores of varying cross-section type and shape in shale gas reservoirs[J]. Chemical Engineering Journal, 2015, 281: 813–825. doi: 10.1016/j.cej.2015.07.012
    [19]
    REN Wenxi, LI Gensheng, TIAN Shouceng, et al. An analytical model for real gas flow in shale nanopores with non-circular cross-section[J]. AIChE Journal, 2016, 62(8): 2893–2901. doi: 10.1002/aic.15254
    [20]
    SUN Zheng, LI Xiangfang, SHI Juntai, et al. Apparent permeability model for real gas transport through shale gas reservoirs considering water distribution characteristic [J]. International Journal of Heat and Mass Transfer, 2017, 115(part A): 1008−1019.
    [21]
    REN Wenxi, GUO Jianchun, ZENG Fanghui, et al. Modeling of high-pressure methane adsorption on wet shales[J]. Energy & Fuels, 2019, 33(8): 7043–7051.
    [22]
    LI Jing, WU Keliu, CHEN Zhangxin, et al. Effects of energetic heterogeneity on gas adsorption and gas storage in geologic shale systems[J]. Applied Energy, 2019, 251: 113368. doi: 10.1016/j.apenergy.2019.113368
    [23]
    YANG Feng, NING Zhengfu, ZHANG Rui, et al. Investigations on the methane sorption capacity of marine shales from Sichuan Basin, China[J]. International Journal of Coal Geology, 2015, 146: 104–117. doi: 10.1016/j.coal.2015.05.009
    [24]
    REN Wenxi, TIAN Shouceng, LI Gensheng, et al. Modeling of mixed-gas adsorption on shale using hPC-SAFT-MPTA[J]. Fuel, 2017, 210: 535–544. doi: 10.1016/j.fuel.2017.09.012
    [25]
    YANG Feng, XIE Congjiao, NING Zhengfu, et al. High-pressure methane sorption on dry and moisture-equilibrated shales[J]. Energy & Fuels, 2017, 31(1): 482–492.
    [26]
    任文希,周玉,郭建春,等. 适用于中深层—深层页岩气的高压吸附模型[J]. 地球科学,2022,47(5):1865–1875. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205023

    REN Wenxi, ZHOU Yu, GUO Jianchun, et al. High-pressure adsorption model for middle–deep and deep shale gas[J]. Earth Science, 2022, 47(5): 1865–1875. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205023
    [27]
    ARPS J J. Analysis of decline curves[J]. Transactions of the AIME, 1945, 160(1): 228–247. doi: 10.2118/945228-G
    [28]
    ILK D, RUSHING J A, PEREGO A D, et al. Exponential vs. hyperbolic decline in tight gas sands: understanding the origin and implications for reserve estimates using Arps’ decline curves[R]. SPE 116731, 2008.
    [29]
    DUONG A N. An unconventional rate decline approach for tight and fracture-dominated gas wells[R]. SPE 137748, 2010.
    [30]
    CLARK A J, LAKE L W, PATZEK T W. Production forecasting with logistic growth models[R]. SPE 144790, 2011.
    [31]
    TAN Lei, ZUO Lihua, WANG Binbin. Methods of decline curve analysis for shale gas reservoirs[J]. Energies, 2018, 11(3): 552. doi: 10.3390/en11030552
    [32]
    ZUO Lihua, YU Wei, WU Kan. A fractional decline curve analysis model for shale gas reservoirs[J]. International Journal of Coal Geology, 2016, 163: 140–148. doi: 10.1016/j.coal.2016.07.006
    [33]
    YU Shaoyong, LEE W J, MIOCEVIC D J, et al. Estimating proved reserves in tight/shale wells using the modified SEPD method[R]. SPE 166198, 2013.
    [34]
    REN Wenxi, LAU H C. Analytical modeling and probabilistic evaluation of gas production from a hydraulically fractured shale reservoir using a quad-linear flow model[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106516. doi: 10.1016/j.petrol.2019.106516
    [35]
    REN Wenxi, LAU H C. New rate-transient analysis for fractured shale gas wells using a tri-linear flow model[J]. Journal of Natural Gas Science and Engineering, 2020, 80: 103368. doi: 10.1016/j.jngse.2020.103368
    [36]
    SONG Xuanyi, LIU Yuetian, XUE Liang, et al. Time-series well performance prediction based on long short-term memory (LSTM) neural network model[J]. Journal of Petroleum Science and Engineering, 2020, 186: 106682. doi: 10.1016/j.petrol.2019.106682
    [37]
    CHEN Xianchao, LI Jiang, GAO Ping, et al. Prediction of shale gas horizontal wells productivity after volume fracturing using machine learning–an LSTM approach[J]. Petroleum Science and Technology, 2022, 40(15): 1861–1877. doi: 10.1080/10916466.2022.2032739
    [38]
    LEE K, LIM J, YOON D, et al. Prediction of shale-gas production at Duvernay Formation using deep-learning algorithm[J]. SPE Journal, 2019, 24(6): 2423–2437. doi: 10.2118/195698-PA
    [39]
    KOCOGLU Y, GORELL S, MCELROY P. Application of Bayesian optimized deep Bi-LSTM neural networks for production forecasting of gas wells in unconventional shale gas reservoirs[R]. URTEC-2021-5418-MS, 2021. .
    [40]
    YANG Run, LIU Xiangui, YU Rongze, et al. Long short-term memory suggests a model for predicting shale gas production[J]. Applied Energy, 2022, 322: 119415. doi: 10.1016/j.apenergy.2022.119415
    [41]
    WANG Tianyu, WANG Qisheng, SHI Jing, et al. Productivity prediction of fractured horizontal well in shale gas reservoirs with machine learning algorithms[J]. Applied Sciences, 2021, 11(24): 12064. doi: 10.3390/app112412064
    [42]
    BEN TAIEB S, BONTEMPI G, ATIYA A F, et al. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition[J]. Expert Systems with Applications, 2012, 39(8): 7067–7083. doi: 10.1016/j.eswa.2012.01.039
    [43]
    TADJER A, HONG A, BRATVOLD R B. Machine learning based decline curve analysis for short-term oil production forecast[J]. Energy Exploration & Exploitation, 2021, 39(5): 1747–1769.
    [44]
    李丽哲,周福建,王博. 水平井多级压裂高维参数智能优化方法研究[J]. 石油科学通报,2023,8(3):347–359. doi: 10.3969/j.issn.2096-1693.2023.03.025

    LI Lizhe, ZHOU Fujian, WANG Bo. Method investigation on intelligent optimization of high dimension HWMHF parameters[J]. Petroleum Science Bulletin, 2023, 8(3): 347–359. doi: 10.3969/j.issn.2096-1693.2023.03.025
    [45]
    DU Yihe, LIU Hualin, SUN Yuping, et al. An improved integrated numerical simulation method to study main controlling factors of EUR and optimization of development strategy[J]. Energies, 2023, 16(4): 2011. doi: 10.3390/en16042011
    [46]
    RAHMANIFARD H, ALIMOHAMADI H, GATES I. Well performance prediction in Montney Formation using machine learning approaches[R]. URTEC-2020-2465-MS, 2020.
    [47]
    LI Dongshuang, YOU Shaohua, LIAO Qinzhuo, et al. Prediction of shale gas production by hydraulic fracturing in Changning Area using machine learning algorithms[J]. Transport in Porous Media, 2023, 149(1): 373–388. doi: 10.1007/s11242-023-01935-3
    [48]
    MORADIDOWLATABAD M, JAMIOLAHMADY M. The performance evaluation and design optimisation of multiple fractured horizontal wells in tight reservoirs[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 19–31. doi: 10.1016/j.jngse.2017.10.011
    [49]
    RAHMANIFARD H, PLAKSINA T. Application of fast analytical approach and AI optimization techniques to hydraulic fracture stage placement in shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 367–378. doi: 10.1016/j.jngse.2018.01.047
    [50]
    YAO Jun, LI Zhihao, LIU Lijun, et al. Optimization of fracturing parameters by modified variable-length particle-swarm optimization in shale-gas reservoir[J]. SPE Journal, 2021, 26(2): 1032–1049. doi: 10.2118/205023-PA
    [51]
    隋微波,温长云,孙文常,等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业,2023,43(2):87–103.

    SUI Weibo, WEN Changyun, SUN Wenchang, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(2): 87–103.
    [52]
    ZHAO Yu, BESSA F, SAHNI V, et al. Key learnings from hydraulic fracturing test site-2 (HFTS-2), Delaware Basin[R]. URTEC-2021-5229-MS, 2021.
    [53]
    LIU Huihai, ZHANG Jilin, LIANG Feng, et al. Incorporation of physics into machine learning for production prediction from unconventional reservoirs: a brief review of the gray-box approach[J]. SPE Reservoir Evaluation & Engineering, 2021, 24(4): 847–858.
    [54]
    BUTLER E, PERTUSO D, HUA G, et al. Automated hydraulic fracturing integrated with predictive machine learning[R]. SPE 209165, 2022.
  • Related Articles

    [1]HE Le, ZHU Juhui, LIANG Xing, ZHAO Zhiyong, GUAN Bin, AN Shujie. Evaluation of Multi-Cluster Fracturing Effects in Horizontal Shale Gas Wells Based on Optic Fiber Monitoring Outside Casing[J]. Petroleum Drilling Techniques, 2024, 52(4): 110-117. DOI: 10.11911/syztjs.2024075
    [2]LI Ning, LIU Peng, FAN Huajun, HU Jiangtao, WU Hongliang. Evaluation Method of Downhole Multi-Scale Fracturing Effect Based on Array Acoustic Logging[J]. Petroleum Drilling Techniques, 2024, 52(1): 1-7. DOI: 10.11911/syztjs.2024001
    [3]QI Xiao, ZHANG Zhang, LI Dong, YIN Lu, YU Yang. Evaluation of Fracturing Effects in Offshore Sandstone Reservoirs Based on Array Acoustic Logging Technology[J]. Petroleum Drilling Techniques, 2023, 51(6): 128-134. DOI: 10.11911/syztjs.2023069
    [4]ZENG Fanhui, HU Dagan, ZHANG Yu, GUO Jianchun, TIAN Fuchun, ZHENG Bintao. Research on Data-Driven Intelligent Optimization of Fracturing Treatment Parameters for Shale Oil Horizontal Wells[J]. Petroleum Drilling Techniques, 2023, 51(5): 78-87. DOI: 10.11911/syztjs.2023087
    [5]ZHANG Shikun, CHEN Zuo. Status and Prospect of Artificial Intelligence Application in Fracturing Technology[J]. Petroleum Drilling Techniques, 2023, 51(1): 69-77. DOI: 10.11911/syztjs.2022115
    [6]ZHOU Bocheng, XIONG Wei, LAI Jianlin, FANG Qilong. Low-Cost Fracturing Technology in Normal-Pressure Shale Gas Reservoirs in Wulong Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 80-85. DOI: 10.11911/syztjs.2022011
    [7]JIANG Tingxue, ZHOU Jun, LIAO Lulu. Development Status and Future Trends of Intelligent Fracturing Technologies[J]. Petroleum Drilling Techniques, 2022, 50(3): 1-9. DOI: 10.11911/syztjs.2022065
    [8]LI Xinyong, GENG Yudi, LIU Zhiyuan, WANG Wenzhi, ZHOU Zhou. An Experimental Study on Evaluation Methods for Fracturing Effect of Fractured-Vuggy Carbonate Reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 88-93. DOI: 10.11911/syztjs.2020074
    [9]Bian Xiaobing, Jiang Tingxue, Jia Changgui, Li Shuangming, Wang Lei. Production Prediction of Fractured Horizontal Well in Shale Gas Reservoirs Considering Long-Term Flow Conductivity[J]. Petroleum Drilling Techniques, 2014, 42(5): 37-41. DOI: 10.11911/syztjs.201405006
    [10]An Fengjun, Zhao Anjun, Zhou Huizhi, Duan Guifu. Effect Analysis of Secondary Sand Fracturing Using Four-Dimensional Seismic Imaging of Micro-Fractures[J]. Petroleum Drilling Techniques, 2013, 41(5): 98-101. DOI: 10.3969/j.issn.1001-0890.2013.05.019
  • Cited by

    Periodical cited type(9)

    1. 李占江. 基于优化极限学习机与多任务学习的超短期负荷预测方法. 电子设计工程. 2025(08): 159-164 .
    2. 刘念肖,宫少壮,何成浩,张磊,胡苏兵,魏猛. 国内煤岩储层体积改造技术现状及展望. 山东石油化工学院学报. 2025(01): 66-72 .
    3. 马天寿,张东洋,陆灯云,谢祥锋,刘阳. 地质力学参数智能预测技术进展与发展方向. 石油科学通报. 2024(03): 365-382 .
    4. 孙丙向,成海,毕研涛. 石油工程“四提”技术进展与攻关方向. 石油科技论坛. 2024(03): 85-94 .
    5. 盛茂,田守嶒,朱丹丹,王天宇,廖勤拙,李根生. 压裂泵注智能决策系统设计理念与路径探讨. 天然气工业. 2024(09): 108-113 .
    6. 卢聪,罗扬,郭建春,曾凡辉. 融合物理约束的压裂水平井产能智能预测框架构建与应用. 天然气工业. 2024(09): 99-107 .
    7. 王斌,张景臣,董景锋,刘凯新,王晓清,郑伟杰,孔辉,丁祥. 巨厚砾岩油藏水力压裂三维诱导应力数值模拟. 断块油气田. 2024(05): 836-842 .
    8. 田磊聚,朱海金,卢海川,侯薇,步玉环. 改善固井水泥石力学性能的研究进展. 钻井液与完井液. 2024(06): 695-708 .
    9. 刘顺,刘建斌,陈鑫,周志祥,黄凯,杜恒毅,张亚龙,王宗振. 耐温自降解暂憋剂性能影响因素实验. 特种油气藏. 2024(06): 145-150 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (675) PDF downloads (251) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return