Citation: | JIANG Tingxue, ZUO Luo, HUANG Jing. Development Trends and Prospects of Less-Water Hydraulic Fracturing Technology[J]. Petroleum Drilling Techniques, 2020, 48(5): 1-8. DOI: 10.11911/syztjs.2020119 |
[1] |
JENNINGS A R Jr. 压裂液发展综述[J]. 曾中立, 译. 吐哈油气, 1996, 1(4): 71–76.
JENNINGS A R Jr. Summary of fracturing fluid development[J]. Translated by ZENG Zhongli. Tuha Oil & Gas, 1996, 1(4): 71–76.
|
[2] |
王世栋, 潘一, 李沼萱, 等. 非常规压裂液体系研究进展[J]. 现代化工, 2016, 36(10): 38–41.
WANG Shidong, PAN Yi, LI Zhaoxuan, et al. Research progress in unconventional fracturing fluids[J]. Modern Chemical Industry, 2016, 36(10): 38–41.
|
[3] |
杨浩珑, 向祖平, 李龙, 等. CO2泡沫双子表面活性剂清洁压裂液研究与试验[J]. 石油钻探技术, 2018, 46(2): 92–97.
YANG Haolong, XIANG Zuping, LI Long, et al. Research and experiments of a clean fracturing fluid system with CO2 foam gemini surfactant[J]. Petroleum Drilling Techniques, 2018, 46(2): 92–97.
|
[4] |
胡忠前, 马喜平, 何川, 等. 国外低伤害压裂液体系研究新进展[J]. 海洋石油, 2007, 27(3): 93–97.
HU Zhongqian, MA Xiping, HE Chuan, et al. The latest development of foreign low-damage fracturing fluids systems[J]. Offshore Oil, 2007, 27(3): 93–97.
|
[5] |
毛金成, 杨小江, 宋志峰, 等. 耐高温清洁压裂液体系HT-160的研制及性能评价[J]. 石油钻探技术, 2017, 45(6): 105–109.
MAO Jincheng, YANG Xiaojiang, SONG Zhifeng, et al. Development and performance evaluation of high temperature resistant clean fracturing fluid system HT-160[J]. Petroleum Drilling Techniques, 2017, 45(6): 105–109.
|
[6] |
田亚莉. 川渝地区页岩气压裂配套工作液技术研究[D]. 成都: 西南石油大学, 2015.
TIAN Yali. Research on working fluid technology of shale gas fracturing in Sichuan and Chongqing Area[D]. Chengdu: SouthwestPetroleum University, 2015.
|
[7] |
贾婉琳, 曾勇, 张强斌, 等. 页岩气开采用水量影响因素分析[J]. 油气田环境保护, 2018, 28(2): 46–50,56.
JIA Wanlin, ZENG Yong, ZHANG Qiangbin, et al. Analysis of influence factors of water consumption in shale gas exploitation[J]. Environmental Protection of Oil & Gas Fields, 2018, 28(2): 46–50,56.
|
[8] |
宋先松, 石培基, 金蓉. 中国水资源空间分布不均引发的供需矛盾分析[J]. 干旱区研究, 2005, 22(2): 162–166.
SONG Xiansong, SHI Peiji, JIN Rong. Analysis on the contradiction between supply and demand of water resources in China owing to uneven regional distribution[J]. Arid Zone Research, 2005, 22(2): 162–166.
|
[9] |
谢勇. 浅析中国三级阶梯水资源量的分布[J]. 甘肃科技, 2013, 29(21): 42–43.
XIE Yong. A brief analysis of the water resources distribution in the three terrain steps of China[J]. Gansu Science and Technology, 2013, 29(21): 42–43.
|
[10] |
王俊豪, 漆林, 龙英. 无水压裂技术研究现状及发展趋势[J]. 石化技术, 2016, 23(12): 217–218.
WANG Junhao, QI Lin, LONG Ying. Research status and development trend of waterless fracturing technology[J]. Petrochemical Industry Technology, 2016, 23(12): 217–218.
|
[11] |
王满学, 何静, 王永炜. 耐高温低碳烃无水压裂液室内研究[J]. 石油钻探技术, 2017, 45(4): 93–96.
WANG Manxue, HE Jing, WANG Yongwei. Experimental research on performances of hydrocarbon-based heat-resistance low-carbon fracturing fluid[J]. Petroleum Drilling Techniques, 2017, 45(4): 93–96.
|
[12] |
韩烈祥, 朱丽华, 孙海芳, 等. LPG无水压裂技术[J]. 天然气工业, 2014, 34(6): 48–54.
HAN Liexiang, ZHU Lihua, SUN Haifang, et al. LPG waterless fracturing technology[J]. Natural Gas Industry, 2014, 34(6): 48–54.
|
[13] |
赵金洲, 刘鹏, 李勇明, 等. 适用于页岩的低分子烷烃无水压裂液性能研究[J]. 石油钻探技术, 2015, 43(5): 15–19.
ZHAO Jinzhou, LIU Peng, LI Yongming, et al. The properties of non-aqueous fracturing fluid with low-molecular alkane suitable for shales[J]. Petroleum Drilling Techniques, 2015, 43(5): 15–19.
|
[14] |
刘合, 王峰, 张劲, 等. 二氧化碳干法压裂技术: 应用现状与发展趋势[J]. 石油勘探与开发, 2014, 41(4): 466–472.
LIU He, WANG Feng, ZHANG Jin, et al. Fracturing with carbon dioxide: application status and development trend[J]. PetroleumExploration and Development, 2014, 41(4): 466–472.
|
[15] |
熊友明. 国内外泡沫压裂技术发展现状[J]. 钻采工艺, 1992, 15(1): 46–55.
XIONG Youming. Current situation of foam fracturing technology at home and abroad[J]. Drilling & Production Technology, 1992, 15(1): 46–55.
|
[16] |
张景超, 张显忠. 泡沫压裂技术的研究及应用前景[J]. 石油钻采工艺, 1991, 13(4): 71–74.
ZHANG Jingchao, ZHANG Xianzhong. Research and application prospect of foam fracturing technology[J]. Oil Drilling & ProductionTechnology, 1991, 13(4): 71–74.
|
[17] |
胡志明, 穆英, 顾兆斌, 等. 渗吸效应对页岩气赋存状态的影响规律[J]. 天然气工业, 2020, 40(5): 66–71.
HU Zhiming, MU Ying, GU Zhaobin, et al. Law of imbibitioneffect on shale gas occurrence state[J]. Natural Gas Industry, 2020, 40(5): 66–71.
|
[18] |
POPE D S, LEUNG L K, GULBIS J. 粘滞指进对裂缝导流能力的影响[J]. 谢滨, 译. 国外油田工程, 1997(12): 20-23.
POPE D S, LEUNG L K, GULBIS J. Influence of viscous fingering on fracture conductivity[J]. Translated by XIE Bin. Foreign Oilfield Engineering, 1997(12): 20-23.
|
[19] |
周彤, 张士诚, 陈铭, 等. 水平井多簇压裂裂缝的竞争扩展与控制[J]. 中国科学(技术科学), 2019, 49(4): 469–478. doi: 10.1360/N092018-00059
ZHOU Tong, ZHANG Shicheng, CHEN Ming, et al. Competitive propagation of multi-fractures and their control on multi-clustered fracturing of horizontal wells[J]. Scientia Sinica Technologica, 2019, 49(4): 469–478. doi: 10.1360/N092018-00059
|
[20] |
王晓燕, 刘莉君. 胶质气体泡沫(CGA) 特性优化试验研究[J]. 环境科学与技术, 2006, 29(1): 37–39.
WANG Xiaoyan, LIU Lijun. Optimization of characteristics forcolloidal gas aphrons[J]. Environmental Science & Technology, 2006, 29(1): 37–39.
|
[21] |
王湛. 胶质气体泡沫的制备及其驱油性能的研究[D]. 青岛: 中国石油大学(华东), 2011.
WANG Zhan. Preparation of colloidal gas aphron and its properties study on oil displacement[D]. Qingdao: China University of Petroleum(East China), 2011.
|
[22] |
SEBBA F. Predispersed solvent extraction[J]. Separation Science and Technology, 1985, 20(5/6): 331–334.
|
[23] |
TELMADARREIE A, DOTA A, TRIVEDI J J, et al. CO2 microbubbles: a potential fluid for enhanced oil recovery: bulk and porous media studies[J]. Journal of Petroleum Science and Engineering, 2016, 138: 160–173. doi: 10.1016/j.petrol.2015.10.035
|
[24] |
刘凯, 王前荣, 王维波. 微泡沫提高采收率技术研究进展[J]. 应用化工, 2017, 46(6): 1204–1209.
LIU Kai, WANG Qianrong, WANG Weibo. Micro-foam EOR research progress[J]. Applied Chemical Industry, 2017, 46(6): 1204–1209.
|
[25] |
王杰祥, 李娜, 孙红国, 等. 非均质油层空气泡沫驱提高采收率试验研究[J]. 石油钻探技术, 2008, 36(2): 4–6.
WANG Jiexiang, LI Na, SUN Hongguo, et al. Experiment study of improved oil recovery through air foam flooding in heterogeneous reservoir[J]. Petroleum Drilling Techniques, 2008, 36(2): 4–6.
|
[26] |
GROWCOCK F B, KHAN A M, SIMON G A. Application ofwater-based and oil-based aphrons in drilling fluids[R]. SPE 80208, 2003.
|
[27] |
赵福, 王平全, 李旭. 微泡沫钻井液Aphron最新进展[J]. 钻采工艺, 2008, 31(1): 123–124.
ZHAO Fu, WANG Pingquan, LI Xu. Recent advance in aphron drilling fluids[J]. Drilling & Production Technology, 2008, 31(1): 123–124.
|
[28] |
王桂全, 孙玉学, 李建新, 等. 微泡沫钻井液的稳定性研究与应用[J]. 石油钻探技术, 2010, 38(6): 75–78.
WANG Guiquan, SUN Yuxue, LI Jianxin, et al. Stability of micro-foam drilling fluid and its application[J]. Petroleum DrillingTechniques, 2010, 38(6): 75–78.
|
[29] |
王洪军, 焦震, 郑秀华, 等. 大庆油田微泡沫钻井液的研究与应用[J]. 石油钻采工艺, 2007, 29(5): 88–92.
WANG Hongjun, JIAO Zhen, ZHENG Xiuhua, et al. Research and application of micro-foam drilling fluid in Daqing Oilfield[J]. Oil Drilling & Production Technology, 2007, 29(5): 88–92.
|
[30] |
张中宝, 李彦岭, 王贵, 等. 高温高压水基微泡沫钻井液静密度研究[J]. 石油钻探技术, 2008, 36(3): 66–68.
ZHANG Zhongbao, LI Yanling, WANG Gui, et al. Study on HTHP density of water-based micro-foam drilling fluids[J]. Petroleum Drilling Techniques, 2008, 36(3): 66–68.
|
[31] |
RAMIREZ F, GREAVES R, MONTILVA J. Experience using microbubbles-aphron drilling fluid in mature reservoirs of Lake Maracaibo[R]. SPE 73710, 2002.
|
[32] |
GROWCOCK F B, SIMON G A, REA A B, et al. Alternative aphron-based drilling fluid[R]. SPE 87134, 2004.
|
1. |
王敏生,姚云飞. 石油工程领域新质生产力发展路径思考. 石油钻探技术. 2025(01): 1-9 .
![]() | |
2. |
孙文娟,张胜军,门秀杰. 能耗双控转向碳排放双控对油气行业的影响与对策. 油气与新能源. 2024(01): 34-40 .
![]() | |
3. |
傅超,杨进,刘华清,殷启帅,王磊,胡志强. 多维度深水浅层建井方式优选方法研究. 石油钻探技术. 2024(03): 40-46 .
![]() | |
4. |
刘惠民,王敏生,李中超,陈宗琦,艾昆,王运海,毛怡,闫娜. 中国页岩油勘探开发面临的挑战与高效运营机制研究. 石油钻探技术. 2024(03): 1-10 .
![]() | |
5. |
光新军,闫娜. 能源转型背景下油气工程技术发展新方向. 石油钻探技术. 2024(04): 151-157 .
![]() | |
6. |
房志达,王旭涛,刘晓丹,李冠城. 南海油气田“十四五”时期生态环境保护成效和经验. 环境保护. 2024(15): 11-14 .
![]() | |
7. |
王敏生,闫娜,光新军. 石油工程跨界融合技术创新态势研究与建议. 石油钻探技术. 2023(04): 95-103 .
![]() | |
8. |
李阳,王敏生,薛兆杰,光新军. 绿色低碳油气开发工程技术的发展思考. 石油钻探技术. 2023(04): 11-19 .
![]() |