JIANG Tingxue, ZUO Luo, HUANG Jing. Development Trends and Prospects of Less-Water Hydraulic Fracturing Technology[J]. Petroleum Drilling Techniques, 2020, 48(5): 1-8. DOI: 10.11911/syztjs.2020119
Citation: JIANG Tingxue, ZUO Luo, HUANG Jing. Development Trends and Prospects of Less-Water Hydraulic Fracturing Technology[J]. Petroleum Drilling Techniques, 2020, 48(5): 1-8. DOI: 10.11911/syztjs.2020119

Development Trends and Prospects of Less-Water Hydraulic Fracturing Technology

More Information
  • Received Date: August 13, 2020
  • Available Online: September 06, 2020
  • In view of the large water consumption in conventional hydraulic fracturing, the rare implementation for waterless fracturing to reach high sand liquid ratio, and the difficulty in forming complex fractures with foam fracturing, the concept of a less-water hydraulic fracturing technology was proposed. Making full use of the technical advantages of hydraulic fracturing, waterless fracturing and foam fracturing, less-water hydraulic fracturing can reduce the water consumption to the maximum on the basis of satisfying the fracture volume. This paper mainly introduces the key technologies of less-water hydraulic fracturing including the composite rock breaking technology of supercritical carbon dioxide and low-viscosity slick water, balanced extension control technology for multi-cluster fractures based on multiple factors, sand adding technology during the fracture creating and sand carrying process, and flowback and production life-circle management technology, etc. According to these technologies, key methods of less-water hydraulic fracturing were proposed, such as remarkable enhancement of the fracturing fluids’ facture creating efficiency, maximal improvement of the sand liquid ratio in the multi-scale hydraulic fractures and the application of micro-foam fracturing fluid, etc. The proposal of less-water hydraulic fracturing technology has strong theoretical value and significance in idea change of fracturing and development effect enhancement in China.
  • [1]
    JENNINGS A R Jr. 压裂液发展综述[J]. 曾中立, 译. 吐哈油气, 1996, 1(4): 71–76.

    JENNINGS A R Jr. Summary of fracturing fluid development[J]. Translated by ZENG Zhongli. Tuha Oil & Gas, 1996, 1(4): 71–76.
    [2]
    王世栋, 潘一, 李沼萱, 等. 非常规压裂液体系研究进展[J]. 现代化工, 2016, 36(10): 38–41.

    WANG Shidong, PAN Yi, LI Zhaoxuan, et al. Research progress in unconventional fracturing fluids[J]. Modern Chemical Industry, 2016, 36(10): 38–41.
    [3]
    杨浩珑, 向祖平, 李龙, 等. CO2泡沫双子表面活性剂清洁压裂液研究与试验[J]. 石油钻探技术, 2018, 46(2): 92–97.

    YANG Haolong, XIANG Zuping, LI Long, et al. Research and experiments of a clean fracturing fluid system with CO2 foam gemini surfactant[J]. Petroleum Drilling Techniques, 2018, 46(2): 92–97.
    [4]
    胡忠前, 马喜平, 何川, 等. 国外低伤害压裂液体系研究新进展[J]. 海洋石油, 2007, 27(3): 93–97.

    HU Zhongqian, MA Xiping, HE Chuan, et al. The latest development of foreign low-damage fracturing fluids systems[J]. Offshore Oil, 2007, 27(3): 93–97.
    [5]
    毛金成, 杨小江, 宋志峰, 等. 耐高温清洁压裂液体系HT-160的研制及性能评价[J]. 石油钻探技术, 2017, 45(6): 105–109.

    MAO Jincheng, YANG Xiaojiang, SONG Zhifeng, et al. Development and performance evaluation of high temperature resistant clean fracturing fluid system HT-160[J]. Petroleum Drilling Techniques, 2017, 45(6): 105–109.
    [6]
    田亚莉. 川渝地区页岩气压裂配套工作液技术研究[D]. 成都: 西南石油大学, 2015.

    TIAN Yali. Research on working fluid technology of shale gas fracturing in Sichuan and Chongqing Area[D]. Chengdu: SouthwestPetroleum University, 2015.
    [7]
    贾婉琳, 曾勇, 张强斌, 等. 页岩气开采用水量影响因素分析[J]. 油气田环境保护, 2018, 28(2): 46–50,56.

    JIA Wanlin, ZENG Yong, ZHANG Qiangbin, et al. Analysis of influence factors of water consumption in shale gas exploitation[J]. Environmental Protection of Oil & Gas Fields, 2018, 28(2): 46–50,56.
    [8]
    宋先松, 石培基, 金蓉. 中国水资源空间分布不均引发的供需矛盾分析[J]. 干旱区研究, 2005, 22(2): 162–166.

    SONG Xiansong, SHI Peiji, JIN Rong. Analysis on the contradiction between supply and demand of water resources in China owing to uneven regional distribution[J]. Arid Zone Research, 2005, 22(2): 162–166.
    [9]
    谢勇. 浅析中国三级阶梯水资源量的分布[J]. 甘肃科技, 2013, 29(21): 42–43.

    XIE Yong. A brief analysis of the water resources distribution in the three terrain steps of China[J]. Gansu Science and Technology, 2013, 29(21): 42–43.
    [10]
    王俊豪, 漆林, 龙英. 无水压裂技术研究现状及发展趋势[J]. 石化技术, 2016, 23(12): 217–218.

    WANG Junhao, QI Lin, LONG Ying. Research status and development trend of waterless fracturing technology[J]. Petrochemical Industry Technology, 2016, 23(12): 217–218.
    [11]
    王满学, 何静, 王永炜. 耐高温低碳烃无水压裂液室内研究[J]. 石油钻探技术, 2017, 45(4): 93–96.

    WANG Manxue, HE Jing, WANG Yongwei. Experimental research on performances of hydrocarbon-based heat-resistance low-carbon fracturing fluid[J]. Petroleum Drilling Techniques, 2017, 45(4): 93–96.
    [12]
    韩烈祥, 朱丽华, 孙海芳, 等. LPG无水压裂技术[J]. 天然气工业, 2014, 34(6): 48–54.

    HAN Liexiang, ZHU Lihua, SUN Haifang, et al. LPG waterless fracturing technology[J]. Natural Gas Industry, 2014, 34(6): 48–54.
    [13]
    赵金洲, 刘鹏, 李勇明, 等. 适用于页岩的低分子烷烃无水压裂液性能研究[J]. 石油钻探技术, 2015, 43(5): 15–19.

    ZHAO Jinzhou, LIU Peng, LI Yongming, et al. The properties of non-aqueous fracturing fluid with low-molecular alkane suitable for shales[J]. Petroleum Drilling Techniques, 2015, 43(5): 15–19.
    [14]
    刘合, 王峰, 张劲, 等. 二氧化碳干法压裂技术: 应用现状与发展趋势[J]. 石油勘探与开发, 2014, 41(4): 466–472.

    LIU He, WANG Feng, ZHANG Jin, et al. Fracturing with carbon dioxide: application status and development trend[J]. PetroleumExploration and Development, 2014, 41(4): 466–472.
    [15]
    熊友明. 国内外泡沫压裂技术发展现状[J]. 钻采工艺, 1992, 15(1): 46–55.

    XIONG Youming. Current situation of foam fracturing technology at home and abroad[J]. Drilling & Production Technology, 1992, 15(1): 46–55.
    [16]
    张景超, 张显忠. 泡沫压裂技术的研究及应用前景[J]. 石油钻采工艺, 1991, 13(4): 71–74.

    ZHANG Jingchao, ZHANG Xianzhong. Research and application prospect of foam fracturing technology[J]. Oil Drilling & ProductionTechnology, 1991, 13(4): 71–74.
    [17]
    胡志明, 穆英, 顾兆斌, 等. 渗吸效应对页岩气赋存状态的影响规律[J]. 天然气工业, 2020, 40(5): 66–71.

    HU Zhiming, MU Ying, GU Zhaobin, et al. Law of imbibitioneffect on shale gas occurrence state[J]. Natural Gas Industry, 2020, 40(5): 66–71.
    [18]
    POPE D S, LEUNG L K, GULBIS J. 粘滞指进对裂缝导流能力的影响[J]. 谢滨, 译. 国外油田工程, 1997(12): 20-23.

    POPE D S, LEUNG L K, GULBIS J. Influence of viscous fingering on fracture conductivity[J]. Translated by XIE Bin. Foreign Oilfield Engineering, 1997(12): 20-23.
    [19]
    周彤, 张士诚, 陈铭, 等. 水平井多簇压裂裂缝的竞争扩展与控制[J]. 中国科学(技术科学), 2019, 49(4): 469–478. doi: 10.1360/N092018-00059

    ZHOU Tong, ZHANG Shicheng, CHEN Ming, et al. Competitive propagation of multi-fractures and their control on multi-clustered fracturing of horizontal wells[J]. Scientia Sinica Technologica, 2019, 49(4): 469–478. doi: 10.1360/N092018-00059
    [20]
    王晓燕, 刘莉君. 胶质气体泡沫(CGA) 特性优化试验研究[J]. 环境科学与技术, 2006, 29(1): 37–39.

    WANG Xiaoyan, LIU Lijun. Optimization of characteristics forcolloidal gas aphrons[J]. Environmental Science & Technology, 2006, 29(1): 37–39.
    [21]
    王湛. 胶质气体泡沫的制备及其驱油性能的研究[D]. 青岛: 中国石油大学(华东), 2011.

    WANG Zhan. Preparation of colloidal gas aphron and its properties study on oil displacement[D]. Qingdao: China University of Petroleum(East China), 2011.
    [22]
    SEBBA F. Predispersed solvent extraction[J]. Separation Science and Technology, 1985, 20(5/6): 331–334.
    [23]
    TELMADARREIE A, DOTA A, TRIVEDI J J, et al. CO2 microbubbles: a potential fluid for enhanced oil recovery: bulk and porous media studies[J]. Journal of Petroleum Science and Engineering, 2016, 138: 160–173. doi: 10.1016/j.petrol.2015.10.035
    [24]
    刘凯, 王前荣, 王维波. 微泡沫提高采收率技术研究进展[J]. 应用化工, 2017, 46(6): 1204–1209.

    LIU Kai, WANG Qianrong, WANG Weibo. Micro-foam EOR research progress[J]. Applied Chemical Industry, 2017, 46(6): 1204–1209.
    [25]
    王杰祥, 李娜, 孙红国, 等. 非均质油层空气泡沫驱提高采收率试验研究[J]. 石油钻探技术, 2008, 36(2): 4–6.

    WANG Jiexiang, LI Na, SUN Hongguo, et al. Experiment study of improved oil recovery through air foam flooding in heterogeneous reservoir[J]. Petroleum Drilling Techniques, 2008, 36(2): 4–6.
    [26]
    GROWCOCK F B, KHAN A M, SIMON G A. Application ofwater-based and oil-based aphrons in drilling fluids[R]. SPE 80208, 2003.
    [27]
    赵福, 王平全, 李旭. 微泡沫钻井液Aphron最新进展[J]. 钻采工艺, 2008, 31(1): 123–124.

    ZHAO Fu, WANG Pingquan, LI Xu. Recent advance in aphron drilling fluids[J]. Drilling & Production Technology, 2008, 31(1): 123–124.
    [28]
    王桂全, 孙玉学, 李建新, 等. 微泡沫钻井液的稳定性研究与应用[J]. 石油钻探技术, 2010, 38(6): 75–78.

    WANG Guiquan, SUN Yuxue, LI Jianxin, et al. Stability of micro-foam drilling fluid and its application[J]. Petroleum DrillingTechniques, 2010, 38(6): 75–78.
    [29]
    王洪军, 焦震, 郑秀华, 等. 大庆油田微泡沫钻井液的研究与应用[J]. 石油钻采工艺, 2007, 29(5): 88–92.

    WANG Hongjun, JIAO Zhen, ZHENG Xiuhua, et al. Research and application of micro-foam drilling fluid in Daqing Oilfield[J]. Oil Drilling & Production Technology, 2007, 29(5): 88–92.
    [30]
    张中宝, 李彦岭, 王贵, 等. 高温高压水基微泡沫钻井液静密度研究[J]. 石油钻探技术, 2008, 36(3): 66–68.

    ZHANG Zhongbao, LI Yanling, WANG Gui, et al. Study on HTHP density of water-based micro-foam drilling fluids[J]. Petroleum Drilling Techniques, 2008, 36(3): 66–68.
    [31]
    RAMIREZ F, GREAVES R, MONTILVA J. Experience using microbubbles-aphron drilling fluid in mature reservoirs of Lake Maracaibo[R]. SPE 73710, 2002.
    [32]
    GROWCOCK F B, SIMON G A, REA A B, et al. Alternative aphron-based drilling fluid[R]. SPE 87134, 2004.
  • Related Articles

    [1]WANG Zhizhan. Thoughts for New Progress and Development Directions of Sinopec’s Surface Logging Technology[J]. Petroleum Drilling Techniques, 2023, 51(4): 124-133. DOI: 10.11911/syztjs.2023027
    [2]WANG Minsheng. Along-String Measuring Technique and Its Development Direction[J]. Petroleum Drilling Techniques, 2022, 50(4): 52-58. DOI: 10.11911/syztjs.2022001
    [3]LI Yongkang, JIA Yiyong, ZHANG Guangzhong, WANG Hongwan, CUI Yuhai. Research Progress and Development Suggestion of Stratified Acidizing Strings in Water Injection Wells of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(3): 129-134. DOI: 10.11911/syztjs.2021030
    [4]GENG Lidong. Application Status and Development Suggestions of Big Data Technology in Petroleum Engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72-78. DOI: 10.11911/syztjs.2020134
    [5]SONG Xianzhi, XU Fuqiang, SONG Guofeng. Technical Status and Development Suggestions in Exploiting Geothermal Energy from Abandoned Wells[J]. Petroleum Drilling Techniques, 2020, 48(6): 1-7. DOI: 10.11911/syztjs.2020120
    [6]REN Hong. Current Status and Development Recommendations for Gas Hydrate Sampling Technology in the South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(4): 89-93. DOI: 10.11911/syztjs.2020045
    [7]DING Shidong, ZHAO Xiangyang. New Progress and Development Suggestions for Drilling and Completion Technologies in Sinopec Key Exploration Areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11-20. DOI: 10.11911/syztjs.2020069
    [8]CHEN Zuo, XU Guoqing, JIANG Manqi. The Current Status and Development Recommendations for Dry Hot Rock Fracturing Technologies at Home and Abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1-8. DOI: 10.11911/syztjs.2019110
    [9]ZHANG Jinhong. Current Status and Outlook for the Development of Sinopec’s Petroleum Engineering Technologies[J]. Petroleum Drilling Techniques, 2019, 47(3): 9-17. DOI: 10.11911/syztjs.2019061
    [10]LI Yang, XUE Zhaojie. Challenges and Development Tendency of Engineering Technology in Oil and Gas Development in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(1): 1-5. DOI: 10.11911/syztjs.201601001
  • Cited by

    Periodical cited type(8)

    1. 王敏生,姚云飞. 石油工程领域新质生产力发展路径思考. 石油钻探技术. 2025(01): 1-9 . 本站查看
    2. 孙文娟,张胜军,门秀杰. 能耗双控转向碳排放双控对油气行业的影响与对策. 油气与新能源. 2024(01): 34-40 .
    3. 傅超,杨进,刘华清,殷启帅,王磊,胡志强. 多维度深水浅层建井方式优选方法研究. 石油钻探技术. 2024(03): 40-46 . 本站查看
    4. 刘惠民,王敏生,李中超,陈宗琦,艾昆,王运海,毛怡,闫娜. 中国页岩油勘探开发面临的挑战与高效运营机制研究. 石油钻探技术. 2024(03): 1-10 . 本站查看
    5. 光新军,闫娜. 能源转型背景下油气工程技术发展新方向. 石油钻探技术. 2024(04): 151-157 . 本站查看
    6. 房志达,王旭涛,刘晓丹,李冠城. 南海油气田“十四五”时期生态环境保护成效和经验. 环境保护. 2024(15): 11-14 .
    7. 王敏生,闫娜,光新军. 石油工程跨界融合技术创新态势研究与建议. 石油钻探技术. 2023(04): 95-103 . 本站查看
    8. 李阳,王敏生,薛兆杰,光新军. 绿色低碳油气开发工程技术的发展思考. 石油钻探技术. 2023(04): 11-19 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (731) PDF downloads (146) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return