CHEN Zuo, XU Guoqing, JIANG Manqi. The Current Status and Development Recommendations for Dry Hot Rock Fracturing Technologies at Home and Abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1-8. DOI: 10.11911/syztjs.2019110
Citation: CHEN Zuo, XU Guoqing, JIANG Manqi. The Current Status and Development Recommendations for Dry Hot Rock Fracturing Technologies at Home and Abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1-8. DOI: 10.11911/syztjs.2019110

The Current Status and Development Recommendations for Dry Hot Rock Fracturing Technologies at Home and Abroad

More Information
  • Received Date: June 24, 2019
  • Available Online: October 28, 2019
  • Dry hot rock is a special geothermal resource featuring large reserves, wide distribution, clean energy generation, and recyclability. The United States, France and other countries have successfully developed and utilized dry hot rock to generate electricity and heat. Abundant dry hot rock resources have been developed in southern Tibet, western Yunnan, and the coastal areas of the southeast China, but they have not yet been exploited effectively. The efficient development of dry hot rock is of great significance in adjusting energy structure, reducing environment pollution, and coping with climate change challenges. Proper hydraulic fracturing can generate a complex fracture system in thermal reservoirs that will enhance heat exchange volume, which is the key element in the transformation from dry hot rock resources into energy. Based on the research status of dry hot rock fracturing technologies worldwide, this paper analyzed the characteristics of foreign main dry hot rock fracturing technology, and pointed out the situation and difficulties of fracturing faced in the development of dry hot rock in China. It is recommended in this paper that research focus on high temperature dry hot rock mechanics and in-situ stress characteristics, rupture and extension mechanisms of frac under thermal stress, ultra-high temperature staged/zonal fracturing tools, volume fracturing design method for high temperature hard formation and software development, and long-term real-time monitoring of fractures so as to develop the matched fracturing technology as soon as possible. At that point it can then promote the development and utilization of dry hot rock resources.

  • [1]
    曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术, 2015, 43(2): 1–7.

    ZENG Yijing. Technical progress and thinking for development of hot dry rock(HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1–7.
    [2]
    万志军, 赵阳升, 康建荣, 等. 高温岩体地热开发的国际动态及其在中国的开发前景: 第八次全国岩石力学与工程学术论文集[C]. 北京: 科学出版社, 2014: 304–309.

    WAN Zhijun, ZHAO Yangsheng, KANG Jianrong, et al. International progress of hot dry rock geothermal extraction and its exploitation prospect in China: Proceedings of the 8th national conference on rock mechanics and engineering[C]. Beijing: Science Press, 2014: 304–309.
    [3]
    翟海珍, 苏正, 吴能友. 苏尔士增强型地热系统的开发经验及对我国地热开发的启示[J]. 新能源进展, 2014, 2(4): 286–294. doi: 10.3969/j.issn.2095-560X.2014.04.008

    ZHAI Haizhen, SU Zheng, WU Nengyou. Development experiences of the Soultz enhanced geothermal systems and inspirations for geothermal development[J]. Advances in New and Renewable Energy, 2014, 2(4): 286–294. doi: 10.3969/j.issn.2095-560X.2014.04.008
    [4]
    王培义, 马鹏鹏, 张贤印, 等. 中低温地热井钻井完井工艺技术研究与实践[J]. 石油钻探技术, 2017, 45(4): 27–32.

    WANG Peiyi, MA Pengpeng, ZHANG Xianyin, et al. Drilling and completion technologies for of geothermal wells with medium and low temperatures[J]. Petroleum Drilling Techniques, 2017, 45(4): 27–32.
    [5]
    杨方, 李静, 任雪娇. 中国干热岩勘查开发现状[J]. 资源环境与工程, 2012, 26(4): 339–341. doi: 10.3969/j.issn.1671-1211.2012.04.005

    YANG Fang, LI Jing, REN Xuejiao. Prospecting and exploitative present situation of hot dry rock in China[J]. Resources Environment & Engineering, 2012, 26(4): 339–341. doi: 10.3969/j.issn.1671-1211.2012.04.005
    [6]
    牟德刚. ZK201高温地热定向井钻井技术[J]. 石油钻探技术, 2000, 28(4): 11–13. doi: 10.3969/j.issn.1001-0890.2000.04.004

    MOU Degang. Directional drilling techniques in high-temperature geothermal ZK201 Well[J]. Petroleum Drilling Techniques, 2000, 28(4): 11–13. doi: 10.3969/j.issn.1001-0890.2000.04.004
    [7]
    叶顺友, 杨灿, 王海斌, 等. 海南福山凹陷花东1R井干热岩钻井关键技术[J]. 石油钻探技术, 2019, 47(4): 10–16. doi: 10.11911/syztjs.2019030

    YE Shunyou, YANG Can, WANG Haibin, et al. Key drilling technologies for hot dry rock in Well HD-1R in the Hainan Fushan Sag[J]. Petroleum Drilling Techniques, 2019, 47(4): 10–16. doi: 10.11911/syztjs.2019030
    [8]
    付亚荣, 李明磊, 王树义, 等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺, 2018, 40(4): 526–540.

    FU Yarong, LI Minglei, WANG Shuyi, et al. Present situation and prospect of hot dry rock exploration and development[J]. Oil Drilling & Production Technology, 2018, 40(4): 526–540.
    [9]
    谭现锋, 王浩, 康风新. 利津陈庄干热岩GRY1孔压裂试验研究[J]. 探矿工程(岩土钻掘工程), 2016, 43(10): 230–233. doi: 10.3969/j.issn.1672-7428.2016.10.049

    TAN Xianfeng, WANG Hao, KANG Fengxing. Experimental study on fracturing of GRY1 hot dry rock hole in Chenzhuang Town, Lijin County[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2016, 43(10): 230–233. doi: 10.3969/j.issn.1672-7428.2016.10.049
    [10]
    TOMAC I, GUTIERREZ M. Micro-mechanical of thermo-hydro-mechanical fracture propagation in granite[R]. ARMA-2014-7148, 2014.
    [11]
    RIAHI A, DAMJANAC B, FURTNEY J. Thermo-hydro-mechanical numerical modeling of stimulation and heat production of EGS reservoirs[R]. ARMA-2014-7741, 2014.
    [12]
    FRASH L, GUTIERREZ M, HAMPTON J. Scale model simulation of hydraulic fracturing for EGS reservoir creation using a heated true-triaxial apparatus[R]. ISRM-ICHF-2013-013, 2013.
    [13]
    RUTQVIST J, DOBSON P F, JEANNE P, et al. Modeling and monitoring of deep injection at the northwest geysers EGS demonstration, California[R]. ARMA-2013-307, 2013.
    [14]
    Cladouhos T T, PETTY S, NORDIN Y, et al. Improving geothermal project economics with multi-zone stimulation: results from the Newberry Volcano EGS demonstration[R]. ARMA-2013-484, 2013.
    [15]
    杨吉龙, 胡克. 干热岩(HDR)资源研究与开发技术综述[J]. 世界地质, 2001, 20(1): 43–51. doi: 10.3969/j.issn.1004-5589.2001.01.009

    YANG Jilong, HU Ke. A review of hot dry rock(HDR) research and development in the world[J]. World Geology, 2001, 20(1): 43–51. doi: 10.3969/j.issn.1004-5589.2001.01.009
    [16]
    万志军, 赵阳升, 董付科, 等. 高温及三轴应力下花岗岩体力学性能的实验研究[J]. 岩石力学与工程学报, 2008, 27(1): 72–77. doi: 10.3321/j.issn:1000-6915.2008.01.011

    WAN Zhijun, ZHAO Yangsheng, DONG Fuke, et al. Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 72–77. doi: 10.3321/j.issn:1000-6915.2008.01.011
    [17]
    杜守继, 刘华, 职洪涛, 等. 高温后花岗岩岩石力学性能的试验研究[J]. 岩石力学与工程学报, 2004, 23(14): 2359–2364. doi: 10.3321/j.issn:1000-6915.2004.14.010

    DU Shouji, LIU Hua, ZHI Hongtao, et al. Testing study on mechanical properties of post-high-temperature granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14): 2359–2364. doi: 10.3321/j.issn:1000-6915.2004.14.010
    [18]
    郤保平, 赵阳升. 600 ℃内高温状态花岗岩遇水冷却后力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 892–898.

    XI Baoping, ZHAO Yangsheng. Experimental research on mechanics properties of water-cooled granite under high temperatures within 600 ℃[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 892–898.
    [19]
    赵阳升.高温岩体地热开发的岩石力学问题: 21世纪新兴岩石力学与工程发展展望: 中国岩石力学与工程学会第六次学术大会论文集[C]. 北京: 中国科学技术出版社, 2000: 71–74.

    ZHAO Yangsheng. The problem of rock mechanics in heat extraction in hot dry rock: 21st advancing of rock mechanics & rock engineering: Proceedings of the 6th academic conference of the Chinese Society of Rock Mechanics and Engineering[C]. Beijing: China Science and Technology Press, 2000: 71–74.
    [20]
    赵阳升, 万志军, 张渊, 等. 岩石热破裂与渗透性相关规律的实验研究[J]. 岩石力学与工程学报, 2010, 29(10): 1971–1976.

    ZHAO Yangsheng, WAN Zhijun, ZHANG Yuan, et al. Experimental study of related laws of rock thermal cracking and permeability[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 1971–1976.
    [21]
    许天福, 张延军, 于子望, 等. 干热岩水力压裂实验室模拟研究[J]. 科学导报, 2015, 33(19): 35–39.

    XU Tianfu, ZHANG Yanjun, YU Ziwang, et al. Laboratory study of hydraulic fracturing on hot dry rock[J]. Science & Technology Review, 2015, 33(19): 35–39.
    [22]
    李佳琦, 魏铭聪, 冯波, 等. EGS地热能开发过程中水岩作用对热储层特征的影响[J]. 可再生能源, 2014, 32(7): 1004–1010.

    LI Jiaqi, WEI Mingcong, FENG Bo, et al. Impact of water-rock interactions on thermal reservoir characteristics in EGS geothermal development[J]. Renewable Energy Resources, 2014, 32(7): 1004–1010.
    [23]
    鲍新华, 吴永东, 魏铭聪, 等. EGS载热流体水岩作用对人工地热储层裂隙物性特征的影响[J]. 科技导报, 2014, 32(14): 42–47. doi: 10.3981/j.issn.1000-7857.2014.14.006

    BAO Xinhua, WU Yongdong, WEI Mingcong, et al. Impact of water/CO2-rock interactions on formation physical properties in EGS[J]. Science & Technology Review, 2014, 32(14): 42–47. doi: 10.3981/j.issn.1000-7857.2014.14.006
    [24]
    王洋, 张克霓. 增强型地热系统(EGS)的裂隙模拟方法[J]. 上海国土资源, 2011, 32(3): 77–80. doi: 10.3969/j.issn.2095-1329.2011.03.021

    WANG Yang, ZHANG Keni. Modeling approaches for fractures in enhanced geothermal system(EGS)[J]. Shanghai Land & Resource, 2011, 32(3): 77–80. doi: 10.3969/j.issn.2095-1329.2011.03.021
    [25]
    赵阳升, 王瑞凤, 胡耀青, 等. 高温岩体地热开发的块裂介质固流热耦合三维数值模拟[J]. 岩石力学与工程学报, 2002, 21(12): 1751–1755. doi: 10.3321/j.issn:1000-6915.2002.12.001

    ZHAO Yangsheng, WAN Ruifeng, HU Yaoqing, et al. 3D numerical simulation for coupled THM of rock matrix-fractured media in heat extraction in HDR[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1751–1755. doi: 10.3321/j.issn:1000-6915.2002.12.001
    [26]
    翟诚, 孙可明, 李凯. 高温岩体热流固耦合损伤模型及数值模拟[J]. 武汉理工大学学报, 2010, 32(3): 66–69.

    ZHAI Cheng, SUN Keming, LI Kai. Hot dry rock coupling damage model of thermal-hydrological-mechanical and its research of numerical simulation[J]. Journal of Wuhan University of Technology, 2010, 32(3): 66–69.
    [27]
    于庆磊, 郑超, 杨天鸿, 等. 基于细观结构表征的岩石破裂热–力耦合模型及应用[J]. 岩石力学与工程学报, 2012, 31(1): 42–51. doi: 10.3969/j.issn.1000-6915.2012.01.006

    YU Qinglei, ZHENG Chao, YANG Tianhong, et al. Meso-structure characterization based on coupled thermal-mechanical model for rock failure process and applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 42–51. doi: 10.3969/j.issn.1000-6915.2012.01.006
    [28]
    赵延林, 王卫军, 赵阳升, 等. 双重介质热–水–力三维耦合模型及应用[J]. 中国矿业大学学报, 2010, 39(5): 709–715.

    ZHAO Yanlin, WANG Weijun, ZHAO Yangsheng, et al. 3D dual medium model of the thermal-hydro-mechanical coupling and its application[J]. Journal of China University of Mining & Technology, 2010, 39(5): 709–715.
    [29]
    申林方, 冯夏庭, 潘鹏志, 等. 单裂隙花岗岩在应力–渗流–化学耦合作用下试验研究[J]. 岩石力学与工程学报, 2010, 29(7): 1379–1388.

    SHEN Linfang, FENG Xiating, PAN Pengzhi, et al. Experimental research on mechano-hydro-chemical coupling of granite with single fracture[J]. Chinese Journal of Rock Mechanics and engineering, 2010, 29(7): 1379–1388.
    [30]
    王瑞凤, 赵阳升, 胡耀青. 高温岩体地热开发的固流热耦合三维数值模拟[J]. 太原理工大学学报, 2002, 33(3): 275–278. doi: 10.3969/j.issn.1007-9432.2002.03.015

    WANG Ruifeng, ZHAO Yangsheng, HU Yaoqing. 3D numerical simulation in exploitation of HDR[J]. Journal of Taiyuan University of Technology, 2002, 33(3): 275–278. doi: 10.3969/j.issn.1007-9432.2002.03.015
    [31]
    王晓星, 吴能友, 苏正, 等. 增强型地热系统数值模拟研究进展[J]. 可再生能源, 2012, 30(9): 90–94.

    WANG Xiaoxing, WU Nengyou, SU Zheng, et al. Enhanced geothermal systems research progress in numerical simulation[J]. Renewable Energy Resources, 2012, 30(9): 90–94.
    [32]
    蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807–811. doi: 10.3975/cagsb.2012.05.12

    LIN Wenjing, LIU ZHiming, MA Feng, et al. An estimation of HDR resources in China’s mainland[J]. Acta Geoscientica Sinica, 2012, 33(5): 807–811. doi: 10.3975/cagsb.2012.05.12
    [33]
    王晓星, 吴能友, 苏正, 等. 增强型地热系统开发技术研究进展[J]. 地球物理学进展, 2012, 27(1): 355–362. doi: 10.6038/j.issn.1004-2903.2012.01.041

    WANG Xiaoxing, WU Nengyou, SU Zheng, et al. Progress of the enhanced geothermal systems development technology[J]. Progress in Geophysics, 2012, 27(1): 355–362. doi: 10.6038/j.issn.1004-2903.2012.01.041
    [34]
    王淑玲, 张炜, 张桂平, 等. 非常规能源开发利用现状及趋势[J]. 中国矿业, 2013, 22(2): 5–8. doi: 10.3969/j.issn.1004-4051.2013.02.002

    WANG Shuling, ZHANG Wei, ZHANG Guiping, et al. Exploitation and development trend of unconventional energy[J]. China Mining Magazine, 2013, 22(2): 5–8. doi: 10.3969/j.issn.1004-4051.2013.02.002
    [35]
    蔺文静, 刘志明, 王婉丽, 等. 中国地热资源及其潜力评估[J]. 中国地质, 2013, 40(1): 312–320. doi: 10.3969/j.issn.1000-3657.2013.01.021

    LIN Wenjing, LIU ZHiming, WANG Wanli, et al. The assessment of geothermal resources potential of China[J]. Geology in China, 2013, 40(1): 312–320. doi: 10.3969/j.issn.1000-3657.2013.01.021
    [36]
    廖志杰, 万天丰, 张振国. 增强型地热系统: 潜力大、开发难[J]. 地学前缘, 2015, 22(1): 335–344.

    LIAO Zhijie, WAN Tianfeng, ZHANG Zhenguo. The enhanced geothermal system(EGS): huge capacity and difficult exploitation[J]. Earth Science Frontiers, 2015, 22(1): 335–344.
  • Cited by

    Periodical cited type(12)

    1. 罗建新,赵茂林,张烈辉,刘继柱,范梓煊. 基于产量损失率的气井合理配产方法研究. 西南石油大学学报(自然科学版). 2024(01): 89-96 .
    2. 徐凤银,聂志宏,孙伟,熊先钺,徐博瑞,张雷,时小松,刘莹,刘世瑞,赵增平,王渊,黄红星,林海鲲. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系. 煤炭学报. 2024(01): 528-544 .
    3. 沈金才. 页岩气井邻井压裂干扰响应特征及机理探讨:以涪陵页岩气田为例. 地质科技通报. 2024(04): 87-97 .
    4. 汤亚顽. 页岩气开发调整区生产特征及产能影响因素. 江汉石油职工大学学报. 2023(03): 8-10+16 .
    5. 漆世伟,翟中波,王波,杨卫刚. 基于多参数测量柱塞的井底流压连续监测及应用. 中外能源. 2023(10): 62-66 .
    6. 房大志,马伟竣,谷红陶,卢比,胡春锋. 南川区块平桥地区页岩气井生产阶段划分与合理生产方式研究. 油气藏评价与开发. 2022(03): 477-486 .
    7. 蔡勋育,赵培荣,高波,朱彤,田玲珏,孙川翔. 中国石化页岩气“十三五”发展成果与展望. 石油与天然气地质. 2021(01): 16-27 .
    8. 沈金才,董长新,常振. 涪陵页岩气田气井生产阶段划分及动态特征描述. 天然气勘探与开发. 2021(01): 111-117 .
    9. 周玉萍,杨文新,郑爱维,梁榜. 页岩气衰竭开采规律影响因素室内模拟. 天然气勘探与开发. 2021(04): 115-122 .
    10. 陈筱琳. 页岩气完井管柱下入时机分析. 江汉石油职工大学学报. 2020(03): 21-23 .
    11. 崔传智,尹帆,李立峰,冯绪波. 水驱油藏产量递减评价方法. 断块油气田. 2019(05): 605-608 .
    12. 邓佳琪. 一种确定页岩气井合理配产的方法. 江汉石油职工大学学报. 2018(05): 48-51 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (2036) PDF downloads (229) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return