Citation: | GENG Lidong. Application Status and Development Suggestions of Big Data Technology in Petroleum Engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72-78. DOI: 10.11911/syztjs.2020134 |
[1] |
MCKINSEY J, CHUI M, BROWN B, et al. Big data: the next frontier for innovation, competition, and productivity[EB/OL]. [2020-03-20]. https//www.mckinsey.com/business-functions/digital mckinsey/our-insights/big-data-the-next-frontier-for-innovation.
|
[2] |
ISHWARAPPA, ANURADHA J. A brief introduction on big data 5Vs characteristics and hadoop technology[J]. Procedia Computer Science, 2015, 48: 319–324.
|
[3] |
ZBOROWSKI M. How Conocophillips solved its big data problem[J]. Journal of Petroleum Technology, 2018, 70(7): 16–26.
|
[4] |
AL-SUBAIEI D, AL-HAMER M, AL-ZAIDAN A, et al. Smart production surveillance: production monitoring and optimization using integrated digital oil field[R]. SPE 198114, 2019.
|
[5] |
刘伟,闫娜. 人工智能在石油工程领域应用及影响[J]. 石油科技论坛,2018,37(4):32–40. doi: 10.3969/j.issn.1002-302x.2018.04.006
LIU Wei, YAN Na. Application and influence of artificial intelligence in petroleum engineering area[J]. Oil Forum, 2018, 37(4): 32–40. doi: 10.3969/j.issn.1002-302x.2018.04.006
|
[6] |
DELFI cognitive E&P environment[EB/OL]. [2020-03-20]. https://www.software.slb.com/delfi.
|
[7] |
GE’s predix[EB/OL]. [2020-03-20]. https://www.bhge.com/digital/ges-predix.
|
[8] |
Halliburton Landmark introduces DecisionSpace® 365 cloud applications at annual innovation forum[EB/OL]. [2020-03-20]. https://www.halliburton.com/en-US/news/announcements/2019/halliburton-landmark-introduces-decisionSpace-365-cloud-applications.html?node-id=hgeyxtfs.
|
[9] |
AKW Analytics Inc. and PALM- Petroleum Analytics Learning MachineTM[DB/OL]. [2020-03-20]. https://www.researchgate.net/publication/335276595_AKW_Analytics_Inc.
|
[10] |
新华网. 中石油发布勘探开发梦想云平台[EB/OL]. [2020-03-20]. http://www.xinhuanet.com//fortune/2018-11/27/c_1123775741.htm.
Xinhuanet. PetroChina published the dream cloud platform for exploration and exploitation[EB/OL].[2020-03-20]. http://www.xinhuanet.com//fortune/2018-11/27/c_1123775741.htm.
|
[11] |
BUSBY D, PIVOT F, TADJER A. Use of data analytics to improve well placement optimization under uncertainty[R]. SPE 188265, 2017.
|
[12] |
LASHARi S E, TAKBIRI-BORUJENI A, FATHI E, et al. Drilling performance monitoring and optimization: a data-driven approach [J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(4): 2747–2756.
|
[13] |
侯凯.基于大数据的钻头选型方法研究[D].成都: 西南石油大学, 2018.
HOU Kai. Investigation of bit selection method based on the big data[D]. Chengdu: Southwest Petroleum University, 2018.
|
[14] |
NOSHI C, SCUBERT J J. Application of data science and machine learning algorithms for ROP optimization in West Texas: turing data into knowledge[R]. OTC 29288, 2019.
|
[15] |
左迪一.基于大数据分析的克深区块钻井综合提速研究[D].北京: 中国石油大学(北京), 2018.
ZUO Diyi. Research on ROP increasing in Keshen Block based on big data analysis[D]. Beijing: China University of Petroleum (Beijing), 2018.
|
[16] |
刘胜娃, 孙俊明, 高翔, 等.基于人工神经网络的钻井机械钻速预测模型的分析与建立[J].计算机科学, 2019, 46(增刊1): 605–608.
LIU Shengwa, SUN Junming, GAO Xiang, et al. Analysis and establishment of drilling speed prediction model for drilling machinery based on artificial neural networks[J]. Computer Science, 2019, 46(supplement 1): 605–608.
|
[17] |
GUPTA I, TRAN N, DEVEGOWDA D, et al. Looking ahead of the bit using surface drilling and petrophysical data: machine-learning-based real time geosteering in volve field[R]. SPE 199882, 2020.
|
[18] |
李维校.基于石油钻井大数据技术的钻进优化控制的研究[D].西安: 西安石油大学, 2018.
LI Weixiao. Research on drilling optimization control based on petroleum drilling big data technology[D]. Xi’an: Xi’an Shiyou University, 2018.
|
[19] |
JOHNSTON J, GUICHARD A. New findings in drilling and wells using big data analytics[R]. OTC 26021, 2015.
|
[20] |
RAED A, MOHAMMAD A, SALEM G, et al. Drilling through data: automated kicked detection using data mining[R]. SPE 193687, 2018.
|
[21] |
PANKAJ P, GEETAN S, MACDONALD R, et al. Need for speed: data analytics coupled to reservoir characterization fast tracks well completion optimization[R]. SPE 189790, 2018.
|
[22] |
LIANG Yu, LIAO Lulu, GUO Ye. A big data study: correlations between EUR and petrophysics/engineering/production parameters in shale formations by data regression and interpolation analysis[R]. SPE 194381, 2019.
|
[23] |
WILSON A. Technique blends dimensionless numbers and data mining to predict recovery factors[J]. Journal of Petroleum Technology, 2017, 69(10): 88–90.
|
[24] |
ROLLINS B T, BROUSSARD A, CUMMINS B, et al. Continental production allocation and analysis through big data[R]. URTEC 2678296, 2017.
|