Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015
Citation: Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015

Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well

More Information
  • Received Date: November 04, 2014
  • Revised Date: April 13, 2015
  • There are many cleats, fractures and other structural weak planes in coal seams. Fractures may origin from coal body or cleat cracks during hydraulic fracturing. Consequently, mechanisms related to fracture initiation may be significantly different from those observed in conventional reservoir formations. In this regard, a new calculation model of fracture initiation pressure suitable for gas wells in coal-bed methane formations should be established. Considering the delivery network distribution characteristics of the coal seam cleat system and change of cleats in their spatial positions, the stress distribution around the perforated holes and cleats walls was determined based on the rock mechanics and fracture mechanics theory. According to conditions related to tensile and shear failures, the calculation model for fracture initiation pressure of coal was established under different well completion methods. The calculation model was used for two fractured wells and the fracture initiation pressure difference between the calculated value and the measured value in the conditions of open hole completion and perforated completion were 3.96% and 4.72%, respectively. It could be seen that the calculated results coincided well with measured values. The results showed that a seam fracture could be generated from cleats, and the fracture initiation pressures were closely related to coal bed cleat angle, coefficient of internal friction of cleat walls, coal bed horizontal principle stress differences and other factors.
  • [1]
    Fallahzadeh S H,Shadizadeh S R,Pourafshary P.Dealing with the challenges of hydraulic fracture initiation in deviated-cased perforated boreholes[R].SPE 132797,2010.
    [2]
    Haimson B,Fairhurst C.Initiation and extension of hydraulic fractures in rocks[J].SPE Journal,1967,7(3):310-318.
    [3]
    Yew C H,Li Y.Fracturing of a deviated well[R].SPE 16930,1987.
    [4]
    Hossain M M,Rahman M K,Rahman S S.Hydraulic fracture initiation and propagation:roles of wellbore trajectory,perforation and stress regimes[J].Journal of Petroleum Science and Engineering,2000,27(3/4):129-149.
    [5]
    金衍,张旭东,陈勉.天然裂缝地层中垂直井水力裂缝起裂压力模型研究[J].石油学报,2005,26(6):113-114,118. Jin Yan,Zhang Xudong,Chen Mian.Initiation pressure models for hydraulic fracturing of vertical wells in naturally fractured formation[J].Acta Petrolei Sinica,2005,26(6):113-114,118.
    [6]
    金衍,陈勉,张旭东.天然裂缝地层斜井水力裂缝起裂压力模型研究[J].石油学报,2006,27(5):124-126. Jin Yan,Chen Mian,Zhang Xudong.Hydraulic fracturing initiation pressure models for directional wells in naturally fractured formation[J].Acta Petrolei Sinica,2006,27(5):124-126.
    [7]
    赵金洲,任岚,胡永全,等.裂缝性地层射孔井破裂压力计算模型[J].石油学报,2012,33(5):841-845. Zhao Jinzhou,Ren Lan,Hu Yongquan,et al.A calculation model of breakdown pressure for perforated wells in fractured formations[J].Acta Petrolei Sinica,2012,33(5):841-845.
    [8]
    赵金洲,任岚,胡永全,等.裂缝性地层水力裂缝张性起裂压力分析[J].岩石力学与工程学报,2013,32(增刊1):2855-2862. Zhao Jinzhou,Ren Lan,Hu Yongquan,et al.Hydraulic fracture tensile initiation pressure analysis for fractured formations[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(supplement 1):2855-2862.
    [9]
    任岚,赵金洲,胡永全,等.裂缝性储层射孔井水力裂缝张性起裂特征分析[J].中南大学学报:自然科学版,2013,44(2):707-713. Ren Lan,Zhao Jinzhou,Hu Yongquan,et al.Tensile initiation characteristics analysis of hydraulic fracture in perforated well of fractured formations[J].Journal of Central South University:Science and Technology,2013,44(2):707-713.
    [10]
    唐书恒,朱宝存,颜志丰.地应力对煤层气井水力压裂裂缝发育的影响[J].煤炭学报,2011,36(1):65-69. Tang Shuheng,Zhu Baocun,Yan Zhifeng.Effect of crustal stress on hydraulic fracturing in coalbed methane wells[J].Journal of China Coal Society,2011,36(1):65-69.
    [11]
    陈勉,金衍,张广清.石油工程岩石力学[M].北京:科学出版社,2008:60-65. Chen Mian,Jin Yan,Zhang Guangqing.Petroleum engineering rock mechanics[M].Beijing:Science Press,2008:60-65.
    [12]
    Jaeger J C,Cook N W,Zimmerman R W.Fundamentals of rock mechanics[M].Oxford:Blackwell Publishing,2007:237-242.
  • Related Articles

    [1]LIU Jinlu, LI Jun, LIU Gonghui, LI Hui, YANG Hongwei. Prediction Model of Wellbore Temperature Field during Deepwater Cementing Circulation Stage[J]. Petroleum Drilling Techniques, 2024, 52(4): 66-74. DOI: 10.11911/syztjs.2024065
    [2]YU Haitang, DING Yi, LIU Yanmei, PENG Miao, LIANG Lixi, YU Xiaolong. A Dynamical Spontaneous Imbibition Model for ShaleConsidering Hydration Damage[J]. Petroleum Drilling Techniques, 2023, 51(5): 139-148. DOI: 10.11911/syztjs.2023054
    [3]WANG Tao, LI Yao, HE Hui. A Coupling Allocation Model of Finely Layered Water Injection Considering Pressure Constraint[J]. Petroleum Drilling Techniques, 2023, 51(2): 95-101. DOI: 10.11911/syztjs.2023012
    [4]CEN Xueqi, WU Xiaodong, WANG Lei, ZHENG Lei, GE Lei. A New Model for Calculating the Ideal Beam Counterbalance Weight for a Pumping Unit[J]. Petroleum Drilling Techniques, 2016, 44(2): 82-86. DOI: 10.11911/syztjs.201602014
    [5]Tian Shouceng, Chen Liqiang, Sheng Mao, Li Gensheng, Liu Qingling. Modeling of Fracture Initiation for Staged Hydraulic Jetting Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(5): 31-36. DOI: 10.11911/syztjs.201505006
    [6]He Miao, Liu Gonghui, Li Jun, Li Mengbo, Zha Chunqing, Li Gen. Solution and Analysis of Fully Transient Temperature and Pressure Coupling Model for Multiphase Flow[J]. Petroleum Drilling Techniques, 2015, 43(2): 25-32. DOI: 10.11911/syztjs.201502005
    [7]Li Daqi, Kang Yili, Liu Xiushan, Chen Zengwei, Si Na. Progress in Drilling Fluid Loss Dynamics Model for Fractured Formations[J]. Petroleum Drilling Techniques, 2013, 41(4): 42-47. DOI: 10.3969/j.issn.1001-0890.2013.04.010
    [8]Wu Shinan, Zhang Jinlong, Ding Shidong, Liu Jian. Revision of Mathematical Model of Foamed Cement Slurry Density under Down-Hole Conditions[J]. Petroleum Drilling Techniques, 2013, 41(2): 28-33. DOI: 10.3969/j.issn.1001-0890.2013.02.006
    [9]Meng Hongxia, Chen Dechun, Pan Zhihua, Wu Xiaodong. Productivity Calculation Models and Stimulation Ratio Analysis for Explosive Fracturing Wells[J]. Petroleum Drilling Techniques, 2012, 40(6): 62-66. DOI: 10.3969/j.issn.1001-0890.2012.06.013
    [10]Liang Erguo, Li Zifeng, Zhao Jinhai. Model for Collapsing Strength Calculation of Worn Casing[J]. Petroleum Drilling Techniques, 2012, 40(2): 41-45. DOI: 10.3969/j.issn.1001-0890.2012.02.008
  • Cited by

    Periodical cited type(5)

    1. 鞠明和,陶泽军,蔚立元,姜礼杰,郑彦龙,邹春江. 钢粒子迟滞重复冲击破岩硬岩损伤破裂特征研究. 岩土力学. 2024(04): 1242-1255 .
    2. 李夕兵,郭懿德,陈江湛,黄麟淇. 岩体弱化方法及其在深部高应力硬岩机械化开采中的应用. 有色金属(矿山部分). 2024(06): 51-63 .
    3. 纪国栋,周波,汪海阁,崔柳,王灵碧,王苏为. 粒子冲击钻井钻头设计与流场测试. 断块油气田. 2018(04): 521-524 .
    4. 任福深,方天成,程晓泽,常玉连. 粒子射流冲击下破岩应力分析与破岩区域. 石油学报. 2018(09): 1070-1080 .
    5. 王方祥,王瑞和,周卫东,李罗鹏. 粒子射流冲击破岩效果影响因素试验研究. 石油钻探技术. 2017(02): 40-45 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (3292) PDF downloads (4245) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return