CHEN Xinyong, XU Minglei, MA Ying, XU Yaping, ZHAO Bo, HAN Xu. Drilling and Completion Technologies of Extended-Reach Wells in the Yangshuiwu Buried Hill Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(2): 14-19. DOI: 10.11911/syztjs.2021010
Citation: CHEN Xinyong, XU Minglei, MA Ying, XU Yaping, ZHAO Bo, HAN Xu. Drilling and Completion Technologies of Extended-Reach Wells in the Yangshuiwu Buried Hill Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(2): 14-19. DOI: 10.11911/syztjs.2021010

Drilling and Completion Technologies of Extended-Reach Wells in the Yangshuiwu Buried Hill Reservoir

More Information
  • Received Date: August 24, 2020
  • Revised Date: February 21, 2021
  • Available Online: March 10, 2021
  • Drilling and completion operations in the extended-reach wells of the Yangshuiwu buried hill reservoir are facing technical challenges, such as high friction torque and bottom-hole temperature, difficult well trajectory control and small gaps in cementing, and low ROP in formations of mudstone, conglomerate, and basalt. In light of the formation characteristics, through theoretical analysis and simulation, the casing program and well trajectory were optimized, the well-trajectory control mode and the drilling fluid system were upgraded, and the performance of drilling fluid was improved. In addition, the technical measures for increasing ROP and cementing were introduced. As a result, a system of key drilling and completion technologies of extended-reach wells in the Yangshuiwu buried hill reservoir of the Huabei Oilfield was developed. The field tests of this technical system confirmed safe and smooth drilling and completion in Well T5X and Well T101X. Compared with the adjacent wells without the support of this system, the two test wells had a ROP increase of 27.4% and the drilling cycle decrease of 19.7%. The research and field tests demonstrated that this system can solve the technical difficulties encountered in the drilling and completion of extended-reach wells in the Yangshuiwu buried hill reservoir of the Huabei Oilfield, and can meet the requirements for safe and efficient drilling and completion in this area.
  • [1]
    张以明,李拥军,崔树清,等. 杨税务潜山高温油气藏勘探突破的关键井筒技术[J]. 石油钻采工艺,2018,40(1):20–26.

    ZHANG Yiming, LI Yongjun, CUI Shuqing, et al. Key wellbore technologies for the exploration breakthrough of high-temperature oil and gas reservoirs in Yangshuiwu buried hill[J]. Oil Drilling & Production Technology, 2018, 40(1): 20–26.
    [2]
    李云峰,徐吉,徐小峰,等. 南堡2号构造深层潜山水平井钻井完井技术[J]. 石油钻探技术,2018,46(2):10–16.

    LI Yunfeng, XU Ji, XU Xiaofeng, et al. Drilling and completion techniques for horizontal wells in the deep buried hills of the Nanpu No.2 Structure[J]. Petroleum Drilling Techniques, 2018, 46(2): 10–16.
    [3]
    王波,王旭,邢志谦,等. 冀东油田人工端岛大位移井钻井完井技术[J]. 石油钻探技术,2018,46(4):42–46.

    WANG Bo, WANG Xu, XING Zhiqian, et al. Drilling and completion technologies of extended-reach wells in the artificial island of the Jidong Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(4): 42–46.
    [4]
    王传鸿,邹刚,周歆,等. 自激式水力振荡器结构性能及其振动特性研究[J]. 石油机械,2020,48(11):16–21.

    WANG Chuanhong, ZOU Gang, ZHOU Xin, et al. Research on design features and vibration characteristics of self-excited hydraulic oscillator[J]. China Petroleum Machinery, 2020, 48(11): 16–21.
    [5]
    聂云飞,朱渊,范萧,等. 自激式涡流控制水力振荡器研制与应用[J]. 石油钻探技术,2019,47(5):74–79.

    NIE Yunfei, ZHU Yuan, FAN Xiao, et al. Development and application of self-excited vortex control hydraulic oscillator[J]. Petroleum Drilling Techniques, 2019, 47(5): 74–79.
    [6]
    王建龙,张展豪,冯强,等. 水力振荡器与液力推力器集成应用研究[J]. 石油机械,2017,45(4):44–47.

    WANG Jianlong, ZHANG Zhanhao, FENG Qiang, et al. Study on the integrated application of hydraulic oscillatorand hydraulic thruster[J]. China Petroleum Machinery, 2017, 45(4): 44–47.
    [7]
    王建龙,许京国,杜强,等. 大港油田埕海2-2人工岛钻井提速提效关键技术[J]. 石油机械,2019,47(7):30–35.

    WANG Jianlong, XU Jingguo, DU Qiang, et al. Key technology for drilling speed and efficiency improvement on Chenghai 2-2 Artificial Island of Dagang Oilfield[J]. China Petroleum Machinery, 2019, 47(7): 30–35.
    [8]
    陈新勇,张苏,付潇,等. 扭力冲击钻井工具模拟分析及现场试验[J]. 石油机械,2018,46(9):29–32.

    CHEN Xinyong, ZHANG Su, FU Xiao, et al. Simulation analysis and field test of torque impact drilling tool[J]. China Petroleum Machinery, 2018, 46(9): 29–32.
    [9]
    李玮,李卓伦,刘伟卿,等. 扭转冲击提速工具在文安区块的现场应用[J]. 特种油气藏,2016,23(4):144–146. doi: 10.3969/j.issn.1006-6535.2016.04.034

    LI Wei, LI Zhuolun, LIU Weiqing, et al. Field application of torsion impact ROP-improvement tool in Block Wenan[J]. Special Oil & Gas Reservoirs, 2016, 23(4): 144–146. doi: 10.3969/j.issn.1006-6535.2016.04.034
    [10]
    于雷,张敬辉,李公让,等. 低活度强抑制封堵钻井液研究与应用[J]. 石油钻探技术,2018,46(1):44–48.

    YU Lei, ZHANG Jinghui, LI Gongrang, et al. Research and application of plugging drilling fluid with low-activity and high inhibition properties[J]. Petroleum Drilling Techniques, 2018, 46(1): 44–48.
    [11]
    杨文权,张宇,程智,等. 超高温钻井液在杨税务潜山深井中的应用[J]. 钻井液与完井液,2019,36(3):298–302. doi: 10.3969/j.issn.1001-5620.2019.03.006

    YANG Wenquan, ZHANG Yu, CHENG Zhi, et al. Application of an ultra-high temperature drilling fluid in deep well drilling in Yangshuiwu buried hill[J]. Drilling Fluid & Completion Fluid, 2019, 36(3): 298–302. doi: 10.3969/j.issn.1001-5620.2019.03.006
    [12]
    宋洵成,王鹏,张宇,等. 安探4X井低固相超高温钻井液技术[J]. 钻井液与完井液,2018,35(2):40–43. doi: 10.3969/j.issn.1001-5620.2018.02.006

    SONG Xuncheng, WANG Peng, ZHANG Yu, et al. Low solids ultra-high temperature drilling fluid technology for Well Antan-4X[J]. Drilling Fluid & Completion Fluid, 2018, 35(2): 40–43. doi: 10.3969/j.issn.1001-5620.2018.02.006
    [13]
    和建勇,李拥军,宋元洪,等. 华北油田杨税务潜山内固井技术[J]. 钻井液与完井液,2018,35(2):104–109. doi: 10.3969/j.issn.1001-5620.2018.02.017

    HE Jianyong, LI Yongjun, SONG Yuanhong, et al. Cementing technology for buried hill reservoirs in Block Yangshuiwu in Huabei Oilfield[J]. Drilling Fluid & Completion Fluid, 2018, 35(2): 104–109. doi: 10.3969/j.issn.1001-5620.2018.02.017
  • Related Articles

    [1]GUO Jianchun, REN Wenxi, ZENG Fanhui, LUO Yang, LI Yulin, DU Xiaoyang. Unconventional Oil and Gas Well Fracturing Parameter Intelligent Optimization: Research Progress and Future Development Prospects[J]. Petroleum Drilling Techniques, 2023, 51(5): 1-7. DOI: 10.11911/syztjs.2023097
    [2]WU Zhiying, HU Yafei, JIANG Tingxue, ZHANG Baoping, YAO Yiming, DONG Ning. Study on Propagation and Diversion Characteristics of Hydraulic Fractures in Vuggy Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(4): 90-96. DOI: 10.11911/syztjs.2022084
    [3]ZHOU Bocheng, XIONG Wei, LAI Jianlin, FANG Qilong. Low-Cost Fracturing Technology in Normal-Pressure Shale Gas Reservoirs in Wulong Block[J]. Petroleum Drilling Techniques, 2022, 50(3): 80-85. DOI: 10.11911/syztjs.2022011
    [4]JIANG Tingxue, ZUO Luo, HUANG Jing. Development Trends and Prospects of Less-Water Hydraulic Fracturing Technology[J]. Petroleum Drilling Techniques, 2020, 48(5): 1-8. DOI: 10.11911/syztjs.2020119
    [5]FU Xuan, LI Gensheng, HUANG Zhongwei, CHI Huanpeng, LU Peiqing. Laboratory Testing and Productivity Numerical Simulation for Fracturing CBM Radial Horizontal Wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 99-105. DOI: 10.11911/syztjs.201602017
    [6]WANG Haitao, JIANG Tingxue, BIAN Xiaobing, DUAN Hua. Optimization and Field Application of Hydraulic Fracturing Techniques in Deep Shale Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(2): 76-81. DOI: 10.11911/syztjs.201602013
    [7]Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015
    [8]Li Yang, Deng Jingen, Yu Baohua, Liu Wei, Chen Jianguo. Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment[J]. Petroleum Drilling Techniques, 2014, 42(6): 80-86. DOI: 10.11911/syztjs.201406016
    [9]Peng Chunyao. Mechanism of Interaction between Hydraulic Fractures and Weak Plane in Layered Shale[J]. Petroleum Drilling Techniques, 2014, 42(4): 32-36. DOI: 10.3969/j.issn.1001-0890.2014.04.006
    [10]Zhang Xu, Jiang Tingxue, Jia Changgui, Zhang Baoping, Zhou Jian. Physical Simulation of Hydraulic Fracturing of Shale Gas Reservoir[J]. Petroleum Drilling Techniques, 2013, 41(2): 70-74. DOI: 10.3969/j.issn.1001-0890.2013.02.014
  • Cited by

    Periodical cited type(10)

    1. 章威,王美楠,阳晓燕,张吉磊,胡俊瑜. 渤海复杂底水油藏开发调整策略制定及应用. 石油化工应用. 2023(10): 20-25 .
    2. 孙恩慧,郭敬民,赵秀娟,张东. 底水油藏高含水期水平井转注后对采收率影响研究. 承德石油高等专科学校学报. 2022(01): 24-26+31 .
    3. 于萌,徐国瑞,李翔,张东,盛磊,刘文辉. 海上油田低温酚醛凝胶的改进及应用. 化工科技. 2022(06): 68-72 .
    4. 胡松,王敏,田飞,赵磊. 基于水平井电阻率测井的井间夹层反演方法及应用. 石油钻探技术. 2021(03): 151-158 . 本站查看
    5. 于萌,铁磊磊,李翔,刘文辉. 海上油田剖面调整用分散共聚物颗粒体系的研制. 石油钻探技术. 2020(02): 118-122 . 本站查看
    6. 章威,龙明,周焱斌,张吉磊,欧阳雨薇. 无夹层底水油藏注水开发图版建立与应用. 特种油气藏. 2020(02): 115-119 .
    7. 王倩,高祥录,罗池辉,孟祥兵,甘衫衫,刘佳. 超稠油Ⅲ类油藏夹层发育模式及SAGD提高采收率技术. 特种油气藏. 2020(04): 105-112 .
    8. 王有慧,鲍君刚,王呈呈,高益桁. 高含水砂岩老油田剩余油综合分析及开发实践. 石油化工高等学校学报. 2020(05): 86-91 .
    9. 张吉磊,罗宪波,张运来,何逸凡,周焱斌. 提高稠油底水油藏转注井注水效率研究. 岩性油气藏. 2019(04): 141-148 .
    10. 王超,杨宏楠,乐平,贾冰懿,苏波. 隔夹层成因及其对剩余油分布的影响——以哈得油田东河砂岩油藏为例. 新疆石油天然气. 2019(04): 15-20+1-2 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (574) PDF downloads (134) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return