ZHANG Li, YUE Xiang’an, WANG Youqi. Research on Large Scale Heterogeneous Model Based EOR Methods for Ultra-High Water Cut Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(5): 83-89. DOI: 10.11911/syztjs.2018078
Citation: ZHANG Li, YUE Xiang’an, WANG Youqi. Research on Large Scale Heterogeneous Model Based EOR Methods for Ultra-High Water Cut Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(5): 83-89. DOI: 10.11911/syztjs.2018078

Research on Large Scale Heterogeneous Model Based EOR Methods for Ultra-High Water Cut Reservoirs

More Information
  • Received Date: January 25, 2018
  • After water flooding and polymer flooding,problems can arise,such as a rapid increase of water-oil ratio and water consumption,and poor adaptability of current technologies in the development stage of ultra-high water cut fields.To better analyze the problems,a large-scale heterogeneous physical model was used to explore the EOR methods for the high ultra-high water cut reservoirs after water flooding and polymer flooding.The distribution characteristics of oil saturation in different flooding stages,such as polymer flooding-well pattern adjustment and self-aggregating microsphere-surfactant flooding,were studied and the changes of injection pressure and recovery factor during the test were analyzed.Studies suggested that a combination of streamline direction alteration by well pattern adjustment and sweep coefficient expansion with polymer flooding can be used to increase the recovery ratio of ultra-high water cut reservoirs by 26.0% after water flooding.The new modified self-aggregating microspheres can be transported to the deep reservoir to block the dominant seepage channels and to divert the subsequent oil displacing agent into the remaining oil potential area,hence enhancing oil displacement efficiency of ultra-high water cut reservoirs after polymer flooding.The residual drag coefficient of microsphere-surfactant system is 1.5-1.6 times of that of the polymer,and the recovery ratio after polymer flooding can be further increased by 5% or more.The results showed that the method of well pattern adjustment combined with polymer flooding is suitable for ultra-high water cut reservoirs after water flooding,and the combination of microsphere-surfactant and deep adjustment/plugging oil displacement can be used in polymer flooded reservoirs with high sweep coefficient and high recovery degree.
  • [1]
    孙焕泉.胜利油田三次采油技术的实践与认识[J].石油勘探与开发,2006,33(3):262-266. SUN Huanquan.Practice and understanding on tertiary recovery in Shengli Oilfield[J].Petroleum Exploration and Development,2006,33(3):262-266.
    [2]
    皇海权,吴天亚,孔柏岭,等.河南油田化学驱技术的研究与应用[J].石油地质与工程,2012,26(1):95-97,101. HUANG Haiquan,WU Tianya,KONG Bailing,et al.Research and application of chemical flooding in Henan Oilfiled[J].Petroleum Geology and Engineering,2012,26(1):95-97,101.
    [3]
    王友启.陆相特高含水油田固水提高采收率机制研究[J].中国石油大学学报(自然科学版),2012,36(6):108-112. WANG Youqi.Research on mechanism of enhanced oil recovery using immobilizing movable water in continental extra-high water cut oilfield[J].Journal of China University of Petroleum(Edition of Natural Science),2012,36(6):108-112.
    [4]
    邴绍献.基于特高含水期油水两相渗流的水驱开发特征研究[D].成都:西南石油大学,2013. BING Shaoxian.Study on water drive development characteristics based on the oil-water two phase flow of ultra-high water cut stage[D].Chengdu:Southwest Petroleum University,2013.
    [5]
    王端平.对胜利油区提高原油采收率潜力及转变开发方式的思考[J].油气地质与采收率,2014,21(4):1-4. WANG Duanping.Efficiency and development model transition in Shengli District[J].Petroleum Geology and Recovery Efficiency,2014,21(4):1-4.
    [6]
    裴柏林,曾鸣,刘程.大厚高压油藏物理模型饱和度分布测量方法[J].西南石油大学学报(自然科学版),2013,35(1):135-139. PEI Bailin,ZENG Ming,LIU Cheng.Investigating the saturation distribution measurement method for the physical model of high-pressure and large-thick reservoirs[J].Journal of Southwest Petroleum University(Science Technology Edition),2013,35(1):135-139.
    [7]
    张莉,刘慧卿,陈晓彦.非均相复合驱封堵调剖性能及矿场试验[J].东北石油大学学报,2014,38(1):63-68. ZHANG Li,LIU Huiqing,CHEN Xiaoyan.Pilot test of PPG/polymer/surfactant flooding after polymer flooding[J].Journal of Northeast Petroleum University,2014,38(1):63-68.
    [8]
    王友启.特高含水期油田"四点五类"剩余油分类方法[J].石油钻探技术,2017,45(2):76-80. WANG Youqi."Four Point and Five Types" remaining oil classification in oilfields with ultra-high water cut[J].Petroleum Drilling Techniques,2017,45(2):76-80.
    [9]
    曹毅,张立娟,岳湘安,等.非均质油藏微球乳液调驱物理模拟实验研究[J].西安石油大学学报(自然科学版),2011,26(2):48-51,55. CAO Yi,ZHANG Lijuan,YUE Xiang’an,et al.Experimental research on the profile-control flooding with micro-sphere emulsion in heterogeneous reservoir by physical simulation[J].Journal of Xi’an Shiyou University (Natural Science Edition),2011,26(2):48-51,55.
    [10]
    张霞林,周晓君.聚合物弹性微球乳液调驱实验研究[J].石油钻采工艺,2008,30(5):89-92. ZHANG Xialin,ZHOU Xiaojun.Experimental study on profile control and flooding with polymer elastic microsphere emulsion[J].Oil Drilling Production Technology,2008,30(5):89-92.
    [11]
    宋刚祥,喻高明,韩鑫,等.定量评价调剖效果的新方法[J].石油钻探技术,2012,40(6):96-98. SONG Gangxiang,YU Gaoming,HAN Xin,et al.New methods of quantitatively evaluate effect of profile control[J].Petroleum Drilling Techniques,2012,40(6):96-98.
    [12]
    曹毅,邹希光,杨舒然,等.JYC-1聚合物微球乳液膨胀性能及调驱适应性研究[J].油田化学,2011,28(4):385-389. CAO Yi,ZOU Xiguang,YANG Shuran,et al.The study of expansion performance and flooding adaptability of JYC-1 polymer microsphere emulsion[J].Oilfield Chemistry,2011,28(4):385-389.
  • Related Articles

    [1]ZHANG Yan, FENG Haishun, ZHAI Yong, ZHOU Xiaomei, LIU Dongqing, WANG Kun. Mechanism and Law of CO2 Pressure Flooding in Enhancing Oil Recovery in Low-Permeability Heavy Oil Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(6): 97-106. DOI: 10.11911/syztjs.2024070
    [2]HUO Hongbo, LIU Dongdong, TAO Lin, WANG Deying, SONG Chuang, HE Shiming. Integrity Challenges and Countermeasures of the Offshore CCUS Based on CO2-EOR[J]. Petroleum Drilling Techniques, 2023, 51(2): 74-80. DOI: 10.11911/syztjs.2023009
    [3]YUAN Dengyu. Experimental Study of CO2 Huff and Puff Combined with N2 Foam for Enhanced Oil Recovery by Three-Dimensional Physical Models[J]. Petroleum Drilling Techniques, 2022, 50(6): 126-132. DOI: 10.11911/syztjs.2022105
    [4]XIONG Xiaofei, SHENG Jiaping. Experimental Study on Foam-Assisted Gas Huff-and-Puff in the Jimsar Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2022, 50(2): 22-29. DOI: 10.11911/syztjs.2022017
    [5]LYU Wei, LIU Xiaochun, BAI Hailong, PENG Minglan. Laboratory Test Study of CO2 Responsive Enhanced Foam System[J]. Petroleum Drilling Techniques, 2021, 49(5): 88-93. DOI: 10.11911/syztjs.2021119
    [6]JIA Zhiwei, CHENG Changkun, ZHU Xiuyu, PU Lantian, HAN Yu, HU Futang. Oil Recovery Enhancement by Composite Flooding Technology for Gasi N1–N21 Ultra-High-Salinity Reservoir in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 81-87. DOI: 10.11911/syztjs.2021121
    [7]MOU Hansheng, LU Wenming, CAO Changxiao, SONG Zhaojie, SHI Juntai, ZHANG Hong. Study on Enhanced Oil Recovery Method in Deep-Water Turbidite Reservoirs—A Case Study of X Reservoir in Angola[J]. Petroleum Drilling Techniques, 2021, 49(2): 79-89. DOI: 10.11911/syztjs.2021025
    [8]TAO Guanghui, SHU Huadong, LIU Bin. Ultra-High Molecular Weight Polymer Flooding Technology for Heavy Oil Reservoirs in Block B125 of the Gucheng Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 66-71. DOI: 10.11911/syztjs.2019127
    [9]Liu Zhihong, Ju Binshan, Huang Yingsong, Wu Dan, Jia Junshan, Liu Haicheng. Experimental Study on Microscopic Water-Flooding to EOR of Remaining Oil through Changing Flow Direction[J]. Petroleum Drilling Techniques, 2015, 43(2): 90-96. DOI: 10.11911/syztjs.201202016
    [10]Wu Jia, Pu Wanfen, Dong Zhongjun, Jia Hu, Li Junzhong, Du Yang. Advances of the New Deep Oil Displacement and Profile Control Agent Micro-Gel[J]. Petroleum Drilling Techniques, 2012, 40(3): 107-111. DOI: 10.3969/j.issn.1001-0890.2012.03.022
  • Cited by

    Periodical cited type(17)

    1. 黄中伟,沈亚洲,武晓光,李根生,龙腾达,邹文超,孙唯真,沈昊旸. 超临界水环境下稠油改质降黏特性实验. 石油勘探与开发. 2025(01): 151-160 .
    2. 翁定为,孙强,梁宏波,雷群,管保山,慕立俊,刘汉斌,张绍林,柴麟,黄瑞. 低渗透老油田柔性侧钻水平井挖潜技术. 石油勘探与开发. 2025(01): 194-203 .
    3. 田玉栋. 老油田剩余油挖潜技术对策分析研究. 石油和化工设备. 2025(01): 128-129+147 .
    4. 郭强,张德龙,杨鹏,翁炜,吴烁,金博. 柔性马达载荷传递中挠轴力学特性研究. 钻探工程. 2025(01): 78-83 .
    5. 李根生,黄中伟,史怀忠,杨睿月,武晓光,王天宇,谷子昂. 柔性钻具侧钻短半径双分支水平井成井-压裂关键技术. 中国石油大学学报(自然科学版). 2025(02): 16-27 .
    6. 张峰,姬超,刘宇. 长水平段水平井钻井技术难点分析及对策分析. 中国石油和化工标准与质量. 2024(01): 156-158 .
    7. 马涛,张万栋,方胜杰,吴江,董凯,刘先明. 高强度柔性钻杆研制及试验. 石油机械. 2024(07): 54-61 .
    8. 闫壮,孙凯,穆总结,刘宝振,谢津梁,曾常辉,孙照伟. 超短半径水平井造斜钻进特性研究. 石油机械. 2024(10): 47-54 .
    9. 潘永强,何海蛟,张坤,朱秀玉,闫晶,王洪月. 超短半径水平井双保型醇基钻井液技术. 石油石化节能与计量. 2024(11): 1-6 .
    10. 邹林浩,宋杨,苏义脑,李玮,赵欢,盖京明,李卓伦,焦圣杰. 水平井分段压裂套管孔眼冲蚀机理研究. 特种油气藏. 2024(05): 127-135 .
    11. 刘江,石逊,王雷浩,殷邈,李扬帆. 煤矿采矿区区域治理水平井施工中托压问题的研究与实践. 钻探工程. 2023(03): 145-151 .
    12. 钟虹,何沙. 基于贝叶斯网络的连续管作业人因失误风险因素评价分析. 中国安全生产科学技术. 2023(05): 144-150 .
    13. 赵金,赵星,蔡鹏,彭齐,饶嘉骐. 连续管多孔喷嘴射流工具研制与清洗参数优化. 石油钻探技术. 2023(03): 83-89 . 本站查看
    14. 周福建,李根生,刘皓,刘雄飞,田守嶒,梁天博. 致密油气藏精准压裂-提高采收率一体化技术发展现状及建议. 前瞻科技. 2023(02): 75-88 .
    15. 朱青林,管锋,刘先明,万锋,吴广,严宇. 柔性钻杆O形圈球面密封性能研究. 润滑与密封. 2023(09): 108-114 .
    16. 于琛,李萍,姜晓辉,王建龙,贾培娟,罗洁,刘轩,杨振,张美玲. 海油陆采钻完井技术现状分析. 石化技术. 2023(12): 79-81 .
    17. 黄熠,刘和兴,刘智勤,彭巍,徐超. 南海西部浅层大位移水平井钻井关键技术与实践. 中国海上油气. 2023(06): 115-123 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (4183) PDF downloads (6513) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return