TAO Guanghui, SHU Huadong, LIU Bin. Ultra-High Molecular Weight Polymer Flooding Technology for Heavy Oil Reservoirs in Block B125 of the Gucheng Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 66-71. DOI: 10.11911/syztjs.2019127
Citation: TAO Guanghui, SHU Huadong, LIU Bin. Ultra-High Molecular Weight Polymer Flooding Technology for Heavy Oil Reservoirs in Block B125 of the Gucheng Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 66-71. DOI: 10.11911/syztjs.2019127

Ultra-High Molecular Weight Polymer Flooding Technology for Heavy Oil Reservoirs in Block B125 of the Gucheng Oilfield

More Information
  • Received Date: March 13, 2019
  • Revised Date: October 14, 2019
  • Available Online: November 11, 2019
  • Common heavy oil reservoir in Block B125 of the Gucheng Oilfield shows strong heterogeneity, and the average crude oil viscosity is above 1 000 mPa·s, which makes it more difficult to further improve oil recovery rate. Technical advantages of ultra-high molecular weight polymer in enhancing the recovery factor of common heavy oil were evaluated through viscosity, rheology and oil displacement tests. The effect of sulfur-containing sewage on the performance of polymer solution was investigated. The tests show that ultra-high molecular weight polymer has a superior viscosity increasing property, and the viscosity is more than 40% higher than that of conventional polymers at the same mass concentration, and its recovery factor is 3.4 percentage points higher than that of the conventional polymers with the same viscosity. Sulphur-containing sewage will reduce the viscosity of polymer solution over 10%, the recovery factor can be decreased by 3.0 percentage points, and elasticity will be significantly weakened. A total of 22 polymer injection wells were deployed in Block B125. By the end of 2018, a total of 0.22 PV of polymer solution was injected, and the injection pressure increased 3.5 MPa. The daily oil production rate increment was 45.0 tons and the cumulative oil production increment reached 1.84×104 t, while water cut was decreased by 9.0 percentage points and EOR was increased by 1.19 percentage points in this stage. The research demonstrates that the ultra-high molecular weight polymer flooding technology can bring a largely increased EOR of high viscosity common heavy oil reservoirs, and it can provide a new technical route and on-site basis for enhancing oil recovery in this type of reservoirs.

  • [1]
    丁保东,张贵才,葛际江,等. 普通稠油化学驱的研究进展[J]. 西安石油大学学报(自然科学版), 2011, 26(3): 52–58.

    DING Baodong, ZHANG Guicai, GE Jijiang, et al. Research progress in the chemical flooding of conventional heavy oil[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2011, 26(3): 52–58.
    [2]
    裴海华,张贵才,葛际江,等. 化学驱提高普通稠油采收率的研究进展[J]. 油田化学, 2010, 27(3): 350–356.

    PEI Haihua, ZHANG Guicai, GE Jijiang, et al. Advance in enhanced ordinary heavy oil recovery by chemical flooding[J]. Oilfield Chemistry, 2010, 27(3): 350–356.
    [3]
    蒋平,葛际江,张贵才,等. 稠油油藏化学驱采收率的影响因素[J]. 中国石油大学学报(自然科学版), 2011, 35(2): 166–171.

    JIANG Ping, GE Jijiang, ZHANG Guicai, et al. Influence factor on oil recovery efficiency for chemical flooding of heavy oil reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(2): 166–171.
    [4]
    周远彬,卢建平,李勇强,等. 胜坨油田普通稠油油藏聚合物驱试验效果评价[J]. 河南石油, 2004, 18(2): 29–31.

    ZHOU Yuanbin, LU Jianping, LI Yongqiang, et al. Evaluation of polymer flooding pilot in ordinary heavy oil reservoirs in Shengtuo Oilfield[J]. Henan Petroleum, 2004, 18(2): 29–31.
    [5]
    石静,曹绪龙,王红艳,等. 胜利油田高温高盐稠油油藏复合驱技术[J]. 特种油气藏, 2018, 25(4): 129–133.

    SHI Jing, CAO Xulong, WANG Hongyan, et al. Combination flooding technology used in high-temperature, high-salinity heavy oil reservoirs of Shengli Oilfield[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 129–133.
    [6]
    刘东,胡廷惠,潘广明,等. 稠油油藏弱凝胶调驱增油预测模型研究[J]. 特种油气藏, 2018, 25(4): 103–108.

    LIU Dong, HU Tinghui, PAN Guangming, et al. Forecasting model for profile control and eor in heavy oil reservoirs by using weak gel[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 103–108.
    [7]
    刘义坤,王福林,隋新光. 高浓度聚合物驱提高采收率方法理论研究[J]. 石油钻采工艺, 2008, 30(6): 67–70.

    LIU Yikun, WANG Fulin, SUI Xinguang. Theory research on EOR method of high concentration polymer flooding[J]. Oil Drilling & Production Technology, 2008, 30(6): 67–70.
    [8]
    王德民,程杰成,杨清彦. 粘弹性聚合物溶液能够提高岩心的微观驱油效率[J]. 石油学报, 2000, 21(5): 45–51. doi: 10.3321/j.issn:0253-2697.2000.05.010

    WANG Demin, CHENG Jiecheng, YANG Qingyan. Viscous-elastic polymer can increase micro-scale displacement efficiency in cores[J]. Acta Petrolei Sinica, 2000, 21(5): 45–51. doi: 10.3321/j.issn:0253-2697.2000.05.010
    [9]
    夏惠芬,孔凡顺,吴军政,等. 聚合物溶液的粘弹效应对驱油效率的作用[J]. 大庆石油学院学报, 2004, 28(6): 29–31.

    XIA Huifen, KONG Fanshun, WU Junzheng, et al. The effect of elastic behavior of HPAM solution on displacement efficiency[J]. Journal of Daqing Petroleum Institute, 2004, 28(6): 29–31.
    [10]
    徐辉,孙秀芝,韩玉贵,等. 超高分子量聚合物性能评价及微观结构研究[J]. 石油钻探技术, 2013, 41(3): 114–118. doi: 10.3969/j.issn.1001-0890.2013.03.022

    XU Hui, SUN Xiuzhi, HAN Yugui, et al. Performance evaluation and microstructure study of ultra high molecular weight polymer[J]. Petroleum Drilling Techniques, 2013, 41(3): 114–118. doi: 10.3969/j.issn.1001-0890.2013.03.022
    [11]
    徐辉. 超高分子缔合聚合物溶液特性及驱油效果研究[J]. 石油钻探技术, 2015, 43(2): 78–83.

    XU Hui. Solution characteristics and oil displacement efficiency of an ultrahigh molecular weight association polymer[J]. Petroleum Drilling Techniques, 2015, 43(2): 78–83.
    [12]
    袁敏,贾忠伟,袁纯玉. 聚合物溶液粘弹性影响因素研究[J]. 大庆石油地质与开发, 2005, 24(5): 74–76. doi: 10.3969/j.issn.1000-3754.2005.05.026

    YUAN Min, JIA Zhongwei, YUAN Chunyu. Research on influential factors to viscoelasticity of polymer solution[J]. Petroleum Geology & Oilfield Development in Daqing, 2005, 24(5): 74–76. doi: 10.3969/j.issn.1000-3754.2005.05.026
    [13]
    宋考平,杨二龙,王锦梅,等. 聚合物驱提高驱油效率机理及驱油效果分析[J]. 石油学报, 2004, 25(3): 71–74. doi: 10.3321/j.issn:0253-2697.2004.03.014

    SONG Kaoping, YANG Erlong, WANG Jinmei, et al. Mechanism of enhancing oil displacement efficiency by polymer flooding and driving effectiveness analysis[J]. Acta Petrolei Sinica, 2004, 25(3): 71–74. doi: 10.3321/j.issn:0253-2697.2004.03.014
    [14]
    王雨,宋考平,唐放. 预测聚合物驱油田产量的两种方法的对比[J]. 石油钻探技术, 2009, 37(2): 70–73.

    WANG Yu, SONG Kaoping, TANG Fang. The comparison between two methods of predicting oil production in polymer-flooding oilfields[J]. Petroleum Drilling Techniques, 2009, 37(2): 70–73.
    [15]
    刘洪兵,周正祥,廖广志. 高相对分子质量聚合物驱油效果影响因素分析[J]. 大庆石油地质与开发, 2002, 21(6): 48–50. doi: 10.3969/j.issn.1000-3754.2002.06.017

    LIU Hongbing, ZHOU Zhengxiang, LIAO Guangzhi. Affecting factors of displacement effects of high molecular weight polymer[J]. Petroleum Geology & Oilfield Development in Daqing, 2002, 21(6): 48–50. doi: 10.3969/j.issn.1000-3754.2002.06.017
    [16]
    王旭东,张健,康晓东,等. 稠油油藏水平井聚合物驱注入能力影响因素[J]. 断块油气田, 2017, 24(1): 87–90.

    WANG Xudong, ZHANG Jian, KANG Xiaodong, et al. Influence factors on horizontal well injectivity of polymer flooding in heavy oil reservoir[J]. Fault-Block Oil & Gas Field, 2017, 24(1): 87–90.
  • Related Articles

    [1]WU Zebing, YUAN Ruofei, ZHANG Wenxi, LIU Jiale. Optimization Design of Interface Structure for PDC Composite Sheets Based on Multi-Objective Genetic Algorithms[J]. Petroleum Drilling Techniques, 2024, 52(4): 24-33. DOI: 10.11911/syztjs.2024068
    [2]WANG Zhiyuan, LIANG Peizhi, CHEN Keshan, ZHANG Zhi, ZHANG Jianbo, SUN Baojiang. Multi-Solution Analysis and Optimization Strategy for Intelligent Well Killing in Deep Formation[J]. Petroleum Drilling Techniques, 2024, 52(2): 136-145. DOI: 10.11911/syztjs.2024034
    [3]LYU Zhenhu, LYU Bei, LUO Yao, WU Hu, LI Lizhe, WANG Bo. Optimization of In-Stage Multi-Cluster Temporary Plugging Scheme Based on Optical Fiber Monitoring[J]. Petroleum Drilling Techniques, 2024, 52(1): 114-121. DOI: 10.11911/syztjs.2024014
    [4]LIU Huanle, XUE Shifeng, SUN Zhiyang, ZHOU Chao, FAN Jie. Structural Parameter Optimization and Field Test of a Jetting and Helical Combination Drain Tool[J]. Petroleum Drilling Techniques, 2023, 51(3): 90-96. DOI: 10.11911/syztjs.2022116
    [5]ZHAO Jin, ZHAO Xing, CAI Peng, PENG Qi, RAO Jiaqi. Development of Coiled Tubing Jet Tools with Multi-Hole Nozzles and Cleaning Parameter Optimization[J]. Petroleum Drilling Techniques, 2023, 51(3): 83-89. DOI: 10.11911/syztjs.2023061
    [6]WANG Peng, TIAN Yi, FENG Ding, TU Yiliu. Optimization Design Method for Casing String Combination Based on Heuristic Algorithm[J]. Petroleum Drilling Techniques, 2020, 48(2): 42-48. DOI: 10.11911/syztjs.2020011
    [7]HAO Dilong, HE Xia, WANG Guorong, FANG Xing, LIAO Daisheng, FANG Haihui. Optimization of the Structural Design of the Integral Slip of a Soluble Bridge Plug[J]. Petroleum Drilling Techniques, 2019, 47(1): 69-75. DOI: 10.11911/syztjs.2018151
    [8]CUI Wenhao, SU Zubo, KANG Jian, HAN Guangshun, LYU Yiming, ZHU Hongzheng. Key Technology of Water Detection by Dragging the Pipe String in Multi-Stage Fractured Horizontal Well[J]. Petroleum Drilling Techniques, 2018, 46(1): 97-102. DOI: 10.11911/syztjs.2018014
    [9]Sheng Leixiang, Wang Rongyao, Xu Liangbin, Jiang Shiquan, Zhou Jianliang. Safety Analysis of the Hang-off of Deepwater Drilling Risers during a Typhoon Emergency Period[J]. Petroleum Drilling Techniques, 2015, 43(4): 25-29. DOI: 10.11911/syztjs.201504005
    [10]Wang Lei, Zhang Hui, Zhou Yuyang, Ke Ke, Zhang Jinshuang, Peng Xing. Optimal Design of Hydraulic Parameters for Conductor Jetting in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2015, 43(2): 19-24. DOI: 10.11911/syztjs.201502004
  • Cited by

    Periodical cited type(13)

    1. 马永乾,赵鹏,畅元江,王仕超,张晏铭. 基于LAGRANGE方程的深水钻井隔水管–水下井口系统动力分析. 应用科技. 2024(01): 151-157 .
    2. 王文昌,徐祖凯,周星,王昭彬,陈锋. 超深井钻柱动态疲劳失效特征及参数优选. 石油钻探技术. 2024(02): 118-125 . 本站查看
    3. 畅元江,王仕超,李健,刘秀全. 深水隔水管-防喷器组耦合系统动力学建模与仿真验证. 振动与冲击. 2024(11): 1-8 .
    4. 狄勤丰,骆大坤,秦垦,王文昌,陈锋. 考虑“筒中筒”耦合作用的深水隔水管柱与钻柱碰摩运动规律. 石油钻采工艺. 2024(01): 25-32 .
    5. 王高伟,廖茂林,蒋宏伟,郜志英,房超. 基于钻井液上返流动作用下的隔水管动力学行为研究. 船舶力学. 2023(05): 719-730 .
    6. 孙巧雷,张辉易,姚力萍,李乐勤,张圆圆,冯定. 海上管中管结构力学研究现状与发展. 科学技术与工程. 2023(21): 8907-8915 .
    7. 曹峰,胡波,王安伟,刘永亮. 压裂泵的数值分析及仿真标定验证. 机械设计与研究. 2023(06): 205-210 .
    8. 李旭,朱志强,冯颖韬,赵琥,温达洋,山永林,林黎明. 海洋钻井隔水管系统动力学行为研究. 钻采工艺. 2022(03): 31-36 .
    9. 张昊,雷雨辰,高云飞,张维维,闫启方,刘林超. 分数黏弹性可压缩油气井管杆准静态响应分析. 信阳师范学院学报(自然科学版). 2021(02): 331-338+344 .
    10. 李泉新,褚志伟,许超,杨冬冬. 煤矿井下双动力复合定向钻进轨迹调控研究. 工矿自动化. 2021(12): 25-31 .
    11. 王江帅,李军,柳贡慧,罗晓坤. 气侵条件下新型双梯度钻井环空出口流量变化规律研究. 石油钻探技术. 2020(04): 43-49 . 本站查看
    12. 张光伟,乔阳,田帆,高嗣土,尹福来. 全旋转内置式导向钻井工具动力学分析及仿真. 机械强度. 2020(06): 1417-1423 .
    13. 董学莲,杨芯萍,赵雄,张聪林,郑亮,费凌. 液缸式隔水管张紧系统建模及性能分析. 液压与气动. 2019(08): 39-48 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (1057) PDF downloads (53) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return