LYU Zhenhu, LYU Bei, LUO Yao, et al. Optimization of in-stage multi-cluster temporary plugging scheme based on optical fiber monitoring [J]. Petroleum Drilling Techniques,2024, 52(1):114-121. DOI: 10.11911/syztjs.2024014
Citation: LYU Zhenhu, LYU Bei, LUO Yao, et al. Optimization of in-stage multi-cluster temporary plugging scheme based on optical fiber monitoring [J]. Petroleum Drilling Techniques,2024, 52(1):114-121. DOI: 10.11911/syztjs.2024014

Optimization of In-Stage Multi-Cluster Temporary Plugging Scheme Based on Optical Fiber Monitoring

More Information
  • Received Date: October 11, 2022
  • Revised Date: January 02, 2024
  • Available Online: January 22, 2024
  • It is necessary to temporarily plug the dominant fluid inlet cluster to achieve uniform transformation between clusters in stages. The current temporary plugging schemes are mainly developed based on the indoor temporary plugging test. However, there is a certain gap between the indoor temporary plugging test conditions and the actual fracturing conditions, resulting in an unsatisfactory temporary plugging effect. In order to provide a basis for optimizing in-stage multi-cluster fracturing temporary plugging schemes, a horizontal well of the Carboniferous system in Xinjiang Oilfield was selected, and 12 sets of temporary plugging schemes were designed for five fracturing stages to plug holes or fracture. The out-of-pipe optical fiber monitoring technology was used to monitor the changes in fluid intake of each perforation cluster in stages before and after temporary plugging, and the temporary plugging effect was judged accordingly. After the implementation of 12 sets of temporary plugging schemes in Well A, no diversion between clusters was detected, indicating the ineffectiveness of temporary plugging. The inefficiency is attributed to factors such as the mismatched diameter of the plugging ball with the hole and the random hole orientation, making it challenging to block high-edge holes. In order to avoid perforating the optical fiber, the ruptured disc is a circular through-hole structure, which is not conducive to blocking the hole with the temporary plugging ball. Therefore, improvement measures of temporary plugging schemes were proposed: applying temporary plugging balls with a diameter the same as the hole to block the hole; adding fibers and temporary plugging agents with small particles or using rope temporary plugging agents; making low-edge holes shot through directional perforation; utilizing a tapered hole structure for the ruptured disc.

  • [1]
    赵金洲,陈曦宇,李勇明,等. 水平井分段多簇压裂模拟分析及射孔优化[J]. 石油勘探与开发,2017,44(1):117–124.

    ZHAO Jinzhou, CHEN Xiyu, LI Yongming, et al. Numerical simulation of multi-stage fracturing and optimization of perforation in a horizontal well[J]. Petroleum Exploration and Development, 2017, 44(1): 117–124.
    [2]
    赵金洲,许文俊,李勇明,等. 低渗透油气藏水平井分段多簇压裂簇间距优化新方法[J]. 天然气工业,2016,36(10):63–69.

    ZHAO Jinzhou, XU Wenjun, LI Yongming, et al. A new method for cluster spacing optimization of multi-cluster staged fracturing in horizontal wells of low-permeability oil and gas reservoirs[J]. Natural Gas Industry, 2016, 36(10): 63–69.
    [3]
    马俊修,石胜男,陈进,等. 基于机器学习的玛湖地区水平井压裂设计优化[J]. 深圳大学学报(理工版),2021,38(6):621–627.

    MA Junxiu, SHI Shengnan, CHEN Jin, et al. Optimization of fracture design for horizontal wells in Mahu Region based on machine learning[J]. Journal of Shenzhen University(Science & Engineering), 2021, 38(6): 621–627.
    [4]
    李婷婷,许文俊,王雷,等. 水平井分段多簇压裂暂堵球运移封堵规律[J]. 断块油气田,2023,30(1):168–176.

    LI Tingting, XU Wenjun, WANG Lei, et al. Temporary plugging ball migration and plugging law of staged multi-cluster fracturing in horizontal wells[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 168–176.
    [5]
    承宁,郭旭洋,魏璞,等. 水平井分段分簇压裂缝间干扰和段间干扰建模:以昌吉油田吉7井区八道湾组油藏为例[J]. 新疆石油地质,2021,42(4):437–443.

    CHENG Ning, GUO Xuyang, WEI Pu, et al. Inter-fracture and inter-section interference modeling for staged and clustered fracturing stimulation in horizontal wells: A case study on reservoirs of Badaowan formation in Well Block Ji 7 in Changji Oilfield[J]. Xinjiang Petroleum Geology, 2021, 42(4): 437–443.
    [6]
    肖月. 基于微地震解释的压裂裂缝形态评价方法[D]. 北京:中国石油大学(北京),2020.

    XIAO Yue. Fracture morphology evaluation method based on microseismic interpretation[D]. Beijing: China University of Petroleum(Beijing), 2020.
    [7]
    白华,陈杉沁,王小明,等. SECTT产出剖面动态监测技术在碳酸岩气井暂堵酸化评价中的应用[J]. 新疆石油天然气,2020,16(3):46–50.

    BAI Hua, CHEN Shanqin, WANG Xiaoming, et al. Application of SECTT production profile dynamic monitoring technology in evaluation of temporary plugging and acidizing of carbonate gas wells[J]. Xinjiang Oil & Gas, 2020, 16(3): 46–50.
    [8]
    侯冰,张其星,陈勉. 页岩储层压裂物理模拟技术进展及发展趋势[J]. 石油钻探技术,2023,51(5):66–77.

    HOU Bing, ZHANG Qixing, CHEN Mian. Status and tendency of physical simulation technology for hydraulic fracturing of shale reservoirs[J]. Xinjiang Oil & Gas, 2023, 51(5): 66–77.
    [9]
    隋微波,温长云,孙文常,等. 水力压裂分布式光纤传感联合监测技术研究进展[J]. 天然气工业,2023,43(2):87–103.

    SUI Weibo, WEN Changyun, SUN Wenchang, et al. Joint application of distributed optical fiber sensing technologies for hydraulic fracturing monitoring[J]. Natural Gas Industry, 2023, 43(2): 87–103.
    [10]
    MILLER C, WATERS G, RYLANDER E. Evaluation of production log data from horizontal wells drilled in organic shales[R]. SPE 144326, 2011.
    [11]
    WHEATON B, HAUSTVEIT K, DEEG W, et al. A case study of completion effectiveness in the Eagle Ford shale using DAS/DTS observations and hydraulic fracture modeling[R]. SPE 179149, 2016.
    [12]
    臧传贞,姜汉桥,石善志,等. 基于射孔成像监测的多簇裂缝均匀起裂程度分析:以准噶尔盆地玛湖凹陷致密砾岩为例[J]. 石油勘探与开发,2022,49(2):394–402. doi: 10.1016/S1876-3804(22)60033-8

    ZANG Chuanzhen, JIANG Hanqiao, SHI Shanzhi, et al. An analysis of the uniformity of multi-fracture initiation based on downhole video imaging technology: A case study of Mahu tight conglomerate in Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(2): 394–402. doi: 10.1016/S1876-3804(22)60033-8
    [13]
    王博,周福建,邹雨时,等. 水平井暂堵分段缝间干扰数值模拟方法[J]. 断块油气田,2018,25(4):506–509.

    WANG Bo, ZHOU Fujian, ZOU Yushi, et al. Numerical simulation method of fracture interaction during temporary plugging staged fracturing[J]. Fault-Block Oil & Gas Field, 2018, 25(4): 506–509.
    [14]
    WANG Bo, ZHOU Fujian, ZOU Yushi, et al. Quantitative investigation of fracture interaction by evaluating fracture curvature during temporarily plugging staged fracturing[J]. Journal of Petroleum Science and Engineering, 2019, 172: 559–571. doi: 10.1016/j.petrol.2018.08.038
    [15]
    LI Minghui, ZHOU Fujian, LIU Jinjun, et al. Quantitative investigation of multi-fracture morphology during TPDF through true tri-axial fracturing experiments and CT scanning[J]. Petroleum Science, 2022, 19(4): 1700–1717. doi: 10.1016/j.petsci.2022.03.017
    [16]
    YUAN Lishan, ZHOU Fujian, LI Ben, et al. Experimental study on the effect of fracture surface morphology on plugging efficiency during temporary plugging and diverting fracturing[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103459. doi: 10.1016/j.jngse.2020.103459
    [17]
    曾毅,王兴文,慈建发,等. 海相裸眼水平井多级暂堵转向酸压技术[J]. 重庆科技学院学报(自然科学版),2015,17(2):69–72.

    ZENG Yi, WANG Xingwen, CI Jianfa, et al. The multistage temporary plugging acid-fracturing technology for the openhole horizontal wells in the marine reservoir[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2015, 17(2): 69–72.
    [18]
    ZHANG Lufeng, ZHOU Fujian, MOU Jianye, et al. Large-scale true tri-axial fracturing experimental investigation on diversion behavior of fiber using 3D printing model of rock formation[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106171. doi: 10.1016/j.petrol.2019.06.035
    [19]
    KANG Yili, ZHOU Hexiang, XU Chengyuan, et al. Experimental study on the effect of fracture surface morphology on plugging zone strength based on 3D printing[J]. Energy, 2023, 262(Part A): 125419.
    [20]
    YANG Chen, ZHOU Fujian, FENG Wei, et al. Plugging mechanism of fibers and particulates in hydraulic fracture[J]. Journal of Petroleum Science and Engineering, 2019, 176: 396–402. doi: 10.1016/j.petrol.2019.01.084
    [21]
    YUAN Lishan, ZHOU Fujian, LI Minghui, et al. Experimental study on diverter transport through perforations in multicluster fracturing of horizontal well[J]. SPE Journal, 2022, 27(2): 971–985. doi: 10.2118/SPE-208606-PA
    [22]
    吴宝成,周福建,王明星,等. 绳结式暂堵剂运移及封堵规律实验研究[J]. 钻采工艺,2022,45(4):61–66.

    WU Baocheng, ZHOU Fujian, WANG Mingxing, et al. Experimental study on migration and plugging pattern of knot temporary plugging agent[J]. Drilling & Production Technology, 2022, 45(4): 61–66.
    [23]
    方裕燕,冯炜,张雄,等. 炮眼暂堵室内实验研究[J]. 钻采工艺,2018,41(6):102–105.

    FANG Yuyan, FENG Wei, ZHANG Xiong, et al. Experimental study on temporary plugging of perforations[J]. Drilling & Production Technology, 2018, 41(6): 102–105.
  • Related Articles

    [1]YU Libin, ZHANG Zhigang, JIANG Zhaomin, XU Hui, ZHANG Hongfu, HAN Xurui. Development and Field Testing of the Bionic Peristaltic Drilling Tool[J]. Petroleum Drilling Techniques, 2025, 53(1): 55-59. DOI: 10.11911/syztjs.2024113
    [2]HUANG Feng, CHEN Shichun, LIU Lichao, GUO Chao, LIU Yibin, SHI Yucai. Development and Field Test of BH-VDT3000 Vertical Drilling System[J]. Petroleum Drilling Techniques, 2024, 52(6): 62-68. DOI: 10.11911/syztjs.2024114
    [3]LIU Huanle, XUE Shifeng, SUN Zhiyang, ZHOU Chao, FAN Jie. Structural Parameter Optimization and Field Test of a Jetting and Helical Combination Drain Tool[J]. Petroleum Drilling Techniques, 2023, 51(3): 90-96. DOI: 10.11911/syztjs.2022116
    [4]LIU Jianhua, LING Wenxue, WANG Heng. Study on Rock Breaking Mechanism and Field Test of Triangular Prismatic PDC Cutters[J]. Petroleum Drilling Techniques, 2021, 49(5): 46-50. DOI: 10.11911/syztjs.2021040
    [5]LIU Pingquan, LI Leibing, SHI Yucen, HAN Long. Research and Field Test of Electrically Controlled Sidewall Deep Penetrating Perforating Technology[J]. Petroleum Drilling Techniques, 2021, 49(3): 55-61. DOI: 10.11911/syztjs.2021055
    [6]ZHOU Jianping, YANG Zhanwei, XU Minjie, WANG Liwei, YAO Maotang, GAO Ying. Research and Field Tests of Weighted Fracturing Fluids with Industrial Calcium Chloride and Guar Gum[J]. Petroleum Drilling Techniques, 2021, 49(2): 96-101. DOI: 10.11911/syztjs.2021014
    [7]SU Zhenguo, TANG Zhijun. The Design and Field Testing of Two-Stage and Two-Speed Drilling Tools[J]. Petroleum Drilling Techniques, 2019, 47(1): 59-64. DOI: 10.11911/syztjs.2019010
    [8]YANG Haibo, HOU Ting, FENG Dejie, TENG Zhaozheng, WU Liugen. Research and Field Test of Non-Drilling Plug Expandable Casing Patching Technology[J]. Petroleum Drilling Techniques, 2017, 45(5): 73-77. DOI: 10.11911/syztjs.201705013
    [9]ZHENG Xiaozhi, GU Lei, MA Lanrong, ZHANG Guoan. Performance and Field Tests of Rotary Expandable Liner Hanger[J]. Petroleum Drilling Techniques, 2016, 44(3): 55-60. DOI: 10.11911/syztjs.201603010
    [10]Wang Zaiming, Zhu Kuanliang, Feng Jinghai, Wu Yan, Shen Yuanyuan. Development and Field Test of High-Temperature Gel Valve[J]. Petroleum Drilling Techniques, 2015, 43(4): 78-82. DOI: 10.11911/syztjs.201504014
  • Cited by

    Periodical cited type(7)

    1. 朱炬辉,郑衣珍,何乐,宋佳忆,龚蔚,黄义涛,隋微波. 基于CFD-DEM的压裂水平井暂堵剂运移与封堵有效性研究. 石油科学通报. 2025(03): 511-526 .
    2. 李绍鹏,李常兴,周鹏,蓝宝锋,蔡灿,钟涛. 页岩气水平井暂堵坐封机制与可控暂堵压裂工艺. 断块油气田. 2024(03): 432-438 .
    3. 尹帅,赵军辉,刘平,沈志成. 裂缝性储层天然缝与水力缝开启条件及扩展规律研究. 石油钻探技术. 2024(03): 98-105 . 本站查看
    4. 何乐,朱炬辉,梁兴,赵智勇,管彬,安树杰. 基于管外光纤监测的页岩气水平井多簇压裂效果评价. 石油钻探技术. 2024(04): 110-117 . 本站查看
    5. 郭建春,张宇,曾凡辉,胡大淦,白小嵩,龚高彬,任文希. 非常规油气储层智能压裂技术研究进展与展望. 天然气工业. 2024(09): 13-26 .
    6. 刘平,刘东明,姬程伟,王璐,李栋,王志兴,王天,杜元凯. 水力压裂监测与诊断技术进展与组合应用. 测井技术. 2024(05): 721-730 .
    7. 朱方辉,郑力会,王宪文,王治国,魏攀峰,陶秀娟. 地质-工程-材料参数融合提高低压气井单井作业一次成功率. 石油钻采工艺. 2024(06): 667-680 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (197) PDF downloads (104) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return