YIN Shuai, ZHAO Junhui, LIU Ping, et al. Opening conditions and extension law of natural and hydraulic fractures in fractured reservoirs [J]. Petroleum Drilling Techniques, 2024, 52(3):98-105. DOI: 10.11911/syztjs.2024022
Citation: YIN Shuai, ZHAO Junhui, LIU Ping, et al. Opening conditions and extension law of natural and hydraulic fractures in fractured reservoirs [J]. Petroleum Drilling Techniques, 2024, 52(3):98-105. DOI: 10.11911/syztjs.2024022

Opening Conditions and Extension Law of Natural and Hydraulic Fractures in Fractured Reservoirs

More Information
  • Received Date: January 05, 2024
  • Revised Date: May 09, 2024
  • Available Online: May 24, 2024
  • In order to reveal the opening conditions and extension law of natural and hydraulic fractures in fractured reservoirs and reduce the risk of water channeling, in-situ stress test, natural fracture observation, hydraulic fracture extension test, and simulation were used. In addition, the opening conditions and extension law of natural and hydraulic fractures, the effect of horizontal stress difference on the extension of hydraulic fractures, and the net pressure of communication between natural and hydraulic fractures were systematically studied. The results show that the vertical stress σv in the study area is higher than the maximum horizontal principal stress σH, which is higher than the minimum horizontal principal stress σh. The gradients of vertical stress, maximum horizontal principal stress, and minimum horizontal principal stress are 0.025, 0.020, and 0.017 MPa/m, respectively. The critical pressure gradient of fracture sliding in the tight sandstone of the study area ranges from 0.018 to 0.020 MPa/m, with an average value of 0.019 MPa/m. When the critical pressure gradient in the natural fracture exceeds 0.020 MPa/m, all the ineffective fractures are transformed into effective fractures. As the horizontal stress difference increases from 0 to 10 MPa, the length of hydraulic fractures increases gradually. The length of hydraulic fractures formed under the stress difference of 10 MPa is about 1.52 times that of hydraulic fractures formed under the stress difference of 0 MPa and 5 MPa. The fracturing experiment results show that the hydraulic fracture will be deflected to a certain extent when encountering locally developed gravel particles and then continue to extend along the original direction. In the study area, the net pressure gradient of fracture communication under the condition that natural fractures in the target layer open to form branch fractures is 0.003 MPa /m, and the net pressure of fracture communication is 4.5–9.0 MPa. It is concluded that the construction of an unsteady extension mode of hydraulic fractures in fractured reservoirs should consider the horizontal stress difference, natural fracture development, lithology characteristics, and fracturing operation conditions.

  • [1]
    朱圣举,赵向原,张皎生,等. 低渗透砂岩油藏天然裂缝开启压力及影响因素[J]. 西北大学学报(自然科学版),2016,46(4):573–578.

    ZHU Shengju, ZHAO Xiangyuan, ZHANG Jiaosheng, et al. Fracture opening pressure and its influence factors in low-permeability sandstone reservoirs[J]. Journal of Northwest University(Natural Science Edition), 2016, 46(4): 573–578.
    [2]
    余浩杰,王振嘉,李进步,等. 鄂尔多斯盆地长庆气区复杂致密砂岩气藏开发关键技术进展及攻关方向[J]. 石油学报,2023,44(4):698–712.

    YU Haojie, WANG Zhenjia, LI Jinbu, et al. Key technological progress and breakthrough direction for the development of complex tight gas reservoirs in Changqing Gas Field, Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(4): 698–712.
    [3]
    刘照义. 基于有限−离散元方法的裂缝性储层压裂裂缝起裂扩展规律研究[D]. 大庆:东北石油大学,2022:1-10.

    LIU Zhaoyi. Study on fractures’ initiation and propagation law and optimization of fractured reservoirs in Songliao Basin based on finite-discrete element method[D]. Daqing: Northeast Petroleum University, 2022: 1-10.
    [4]
    蔡玎宁,程时清,李依吉川,等. 阶梯泵注−压降测试确定压裂后地层裂缝形态[J]. 石油钻采工艺,2023,45(6):748–755.

    CAI Dingning, CHENG Shiqing, LI Yijichuan, et al. Step pump injection pressure drop test to determine the morphology of formation fractures after fracturing[J]. Oil Drilling & Production Technology, 2023, 45(6): 748–755.
    [5]
    肖广锐,李尧,张羽茹,等. 绕射波成像在潜山裂缝储层预测中的应用:以渤中A气田为例[J]. 石油物探,2022,61(5):812–820.

    XIAO Guangrui, LI Yao, ZHANG Yuru, et al. Application of diffraction wave imaging for fractured reservoir prediction of buried hill: a case study of BZ-A Oilfield[J]. Geophysical Prospecting Petroleum, 2022, 61(5): 812–820.
    [6]
    张村,刘晨熙,王永乐,等. 有效应力恢复条件下水力压裂后煤层气分区渗流特征[J]. 天然气工业,2024,44(3):152–163.

    ZHANG Cun, LIU Chenxi, WANG Yongle, et al. CBM flow behaviors in fracture zones induced by hydraulic fracturing under effective stress recovery conditions[J]. Natural Gas Industry, 2024, 44(3): 152–163.
    [7]
    吴百烈,彭成勇,武广瑷,等. 可压性指数对压裂裂缝扩展规律的影响研究:以南海LF油田为例[J]. 石油钻探技术,2023,51(3):105–112.

    WU Bailie, PENG Chengyong, WU Guang’ai, et al. Effect of fracability index on fracture propagation: a case study of LF Oilfield in South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(3): 105–112.
    [8]
    章新文,王优先,王根林,等. 河南省南襄盆地泌阳凹陷古近系核桃园组湖相页岩油储集层特征[J]. 古地理学报,2015,17(1):107–118.

    ZHANG Xinwen, WANG Youxian, WANG Genlin, et al. Reservoir characteristics of lacustrine shale oil of the Paleogene Hetaoyuan Formation in Biyang Sag of Nanxiang Basin, Henan Province[J]. Journal of Palaeogeography(Chinese Edition), 2015, 17(1): 107–118.
    [9]
    尹帅,孙晓光,邬忠虎,等. 鄂尔多斯盆地东北缘上古生界构造演化及裂缝耦合控气作用[J]. 中南大学学报(自然科学版),2022,53(9):3724–3737.

    YIN Shuai, SUN Xiaoguang, WU Zhonghu, et al. Coupling control of tectonic evolution and fractures on the Upper Paleozoic gas reservoirs in the northeastern margin of the Ordos Basin[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3724–3737.
    [10]
    邹雨时,石善志,张士诚,等. 致密砾岩加砂压裂与裂缝导流能力实验:以准噶尔盆地玛湖致密砾岩为例[J]. 石油勘探与开发,2021,48(6):1202–1209.

    ZOU Yushi, SHI Shanzhi, ZHANG Shicheng, et al. Experimental modeling of sanding fracturing and conductivity of propped fractures in conglomerate: a case study of tight conglomerate of Mahu Sag in Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1202–1209.
    [11]
    位云生,林铁军,于浩,等. 基于嵌入黏聚单元法的页岩储层压裂缝网扩展规律[J]. 天然气工业,2022,42(10):74–83.

    WEI Yunsheng, LIN Tiejun, YU Hao. Propagation law of fracture network in shale reservoirs based on the embeded cohesive unit method[J]. Natural Gas Industry, 2022, 42(10): 74–83.
    [12]
    高艳霞. 川西致密储层岩石力学特性及裂缝应力敏感性研究[D]. 成都:成都理工大学,2008:1-20.

    GAO Yanxia. The rock mechanical characters and fracture stress sensitivity research of dense reservoir in west Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2008: 1-20.
    [13]
    雍世和,张超谟. 测井数据处理与综合解释[M]. 东营:中国石油大学出版社,2007:34-36.

    YONG Shihe, ZHANG Chaomo. Logging data processing and comprehensive interpretation[M]. Dongying: China University of Petroleum Press, 2007: 34-36.
    [14]
    尹帅,邬忠虎,吴晓明,等. 鄂尔多斯盆地陇东地区洪德区块侏罗系延安组油藏富集规律[J]. 石油与天然气地质,2022,43(5):1167–1179.

    YIN Shuai, WU Zhonghu, WU Xiaoming, et al. Oil enrichment law of the Jurassic Yan’an Formation, Hongde Block, Longdong Area, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1167–1179.
    [15]
    舒红林,刘臣,李志强,等. 昭通浅层页岩气压裂复杂裂缝扩展数值模拟研究[J]. 石油钻探技术,2023,51(6):77–84.

    SHU Honglin, LIU Chen, LI Zhiqiang, et al. Numerical simulation of complex fracture propagation in shallow shale gas fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77–84.
    [16]
    张矿生,薛小佳,陶亮,等. 页岩油水平井体积压裂缝网波及体积评价新方法及应用[J]. 特种油气藏,2023,30(5):127–134. doi: 10.3969/j.issn.1006-6535.2023.05.017

    ZHANG Kuangsheng, XUE Xiaojia, TAO Liang, et al. New method for evaluating the volume fracturing fracture network sweep volume in shale oil horizontal wells and its application[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 127–134. doi: 10.3969/j.issn.1006-6535.2023.05.017
    [17]
    张广清,周大伟,窦金明,等. 天然裂缝群与地应力差作用下水力裂缝扩展试验[J]. 中国石油大学学报(自然科学版),2019,43(5):157–162. doi: 10.3969/j.issn.1673-5005.2019.05.017

    ZHANG Guangqing, ZHOU Dawei, DOU Jinming, et al. Experiments on hydraulic fracture propagation under action of natural fractures and crustal stress difference[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(5): 157–162. doi: 10.3969/j.issn.1673-5005.2019.05.017
    [18]
    WARPINSKI N R, TEUFEL L W. Laboratory measurements of the effective-stress law for carbonate rocks under deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 1169–1172.
    [19]
    尹帅,丁文龙,林利飞,等. 鄂尔多斯盆地西部志丹−吴起地区延长组裂缝特征及其控藏作用[J]. 地球科学,2023,48(7):2614–2629.

    YIN Shuai, DING Wenlong, LIN Lifei, et al. Characteristics and controlling effect on hydrocarbon accumulation of fractures in Yanchang Formation in Zhidan-Wuqi Area, western Ordos Basin[J]. Earth Science, 2023, 48(7): 2614–2629.
    [20]
    徐泽昊,刘向君,梁利喜,等. 砾岩油藏压裂裂缝遇砾扩展行为机理[J]. 油气地质与采收率,2023,30(3):115–127.

    XU Zehao, LIU Xiangjun, LIANG Lixi, et al. Propagation mechanism of fractures caused by hydraulic fracturing when encountering gravel in conglomerate reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(3): 115–127.
    [21]
    尹帅,刘翰林,何建华,等. 动静态地质力学方法约束的致密油砂岩地应力综合评估[J]. 地球科学进展,2023,38(12):1285–1296.

    YIN Shuai, LIU Hanlin, HE Jianhua, et al. Comprehensive evaluation of geo-stress in tight oil sandstone under constraints of dynamic-static geomechanical methods[J]. Advances in Earth Science, 2023, 38(12): 1285–1296.
    [22]
    尹帅,田涛,李俊鹿,等. 鄂尔多斯盆地西南缘延长组断缝体特征及对油藏的调控作用[J]. 油气地质与采收率,2024,31(1):1–12.

    YIN Shuai, TIAN Tao, LI Junlu, et al. Fault-fracture body characteristics and their effect on hydrocarbon distribution of Yanchang Formation in southwestern margin of Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(1): 1–12.
    [23]
    尹帅,金子一,刘程正,等. 裂缝性储层天然缝与人工缝耦合机理及水窜预防井网调整研究[J/OL]. 成都理工大学学报(自然科学版):1-17. (2024-02-21)[2024-04-25]. http://kns.cnki.net/kcms/detail/51.1634.N.20240220.1346.002.html.

    YIN Shuai, JIN Ziyi, LIU Chengzheng, et al. Study on the coupling mechanism between natural and artificial seams in fractured reservoirs and well network adjustment for water runoff prevention[J/OL]. Journal of Chengdu University of Technology(Science & Technology Edition) : 1-17. (2024-02-21)[2024-04-25]. http://kns.cnki.net/kcms/detail/51.1634.N.20240220.1346.002.html.
    [24]
    尹帅,张子阳,许广军,等. 致密砂岩气储层孔缝特征及控储作用:以鄂尔多斯盆地东北部下石盒子组为例[J/OL]. 成都理工大学学报(自然科学版):1-18. (2024-03-02)[2024-04-25]. http://kns.cnki.net/kcms/detail/51.1634.N.20240229.1402.002.html.

    YIN Shuai, ZHANG Ziyang, XU Guangjun, et al. Reservoir characteristics and influencing factors of tight sandstone gas: A case study of Lower Permian Shihezi Formation in northeastern Ordos Basin[J/OL]. Journal of Chengdu University of Technology(Science & Technology Edition) : 1-18. (2024-03-02)[2024-04-25]http://kns.cnki.net/kcms/detail/51.1634.N.20240229.1402.002.html.
    [25]
    李皋,张毅,杨旭. 油气勘探开发中的工程地质力学问题及研究方法[J]. 西南石油大学学报(自然科学版),2023,45(3):72–80.

    LI Gao, ZHANG Yi, YANG Xu. Engineering geological mechanics issues and research methods in oil and gas exploration and development[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(3): 72–80.
    [26]
    曾波,冯宁鑫,姚志广,等. 深层页岩气储层水力压裂裂缝扩展影响机理[J]. 断块油气田,2024,31(2):246–256.

    ZENG Bo, FENG Ningxin, YAO Zhiguang, et al. Influence mechanism of hydraulic fracturing fracture propagation in deep shale gas reservoirs[J]. Fault-Block Oil & Gas Field, 2024, 31(2): 246–256.
    [27]
    吕振虎,吕蓓,罗垚,等. 基于光纤监测的段内多簇暂堵方案优化[J]. 石油钻探技术,2024,52(1):114–121. doi: 10.11911/syztjs.2024014

    LYU Zhenhu, LYU Bei, LUO Yao, et al. Optimization of in-stage multi-cluster temporary plugging scheme based on optical fiber monitoring[J]. Petroleum Drilling Techniques, 2024, 52(1): 114–121. doi: 10.11911/syztjs.2024014
  • Cited by

    Periodical cited type(21)

    1. 徐荣利, 卜向前, 陈文斌, 张彦军, 王广涛, 李昌恒, 贾煦亮, 武安安, 山树民. 长庆致密油超短水平井压裂技术探索与实践. 中国石油勘探. 2025(03)
    2. 徐荣利, 齐银, 薛小佳, 陈文斌, 徐创朝, 张彦军. 庆城页岩油藏结构化驱油压裂技术研究与应用. 石油钻探技术. 2025(02) 本站查看
    3. 杨连如,李锦锋,孙继继,王茜,吴彦君,任颖惠. 致密油地质工程一体化评价体系研究——以鄂尔多斯盆地甘泉西部长8油藏为例. 地球物理学进展. 2025(01): 166-175 .
    4. 郭秀鹏. 基于地质工程一体化压裂参数优化及现场应用——以中原油田东濮老区A区块为例. 石油地质与工程. 2025(02): 1-5 .
    5. 徐洲,孔祥伟,谢昕,王存武,王晨月. 天然裂缝和层理的角度对深煤层水力裂缝扩展的影响. 断块油气田. 2025(03): 493-501 .
    6. 曹炜,马永宁,孟浩,拜杰,张同伍,鲜晟,徐荣利,赵国翔,涂志勇. 庆城页岩油水力压裂试验场大斜度取心井裂缝描述与认识. 中国石油勘探. 2025(02): 133-145 .
    7. 屈雪峰,常睿,何右安,雷启鸿,黄天镜,王高强,关云,李桢. 庆城油田长7段页岩油藏水平井体积压裂渗吸和驱替机理. 新疆石油地质. 2025(03): 344-352 .
    8. 杨静,张献伟,李锦锋,龚嘉顺,张梦雅,杨峰,薛井泉,白峰. 下寺湾油田致密油地质工程一体化压裂技术. 石油化工应用. 2025(05): 15-20 .
    9. 李战奎,吴立伟,郭明宇,徐鲲,马福罡,李文龙. 渤中凹陷深层高压井地质工程一体化技术研究与应用. 石油钻探技术. 2024(02): 194-201 . 本站查看
    10. 郑健,何永生,汪勇,蔡景顺,唐煊赫,朱海燕. 基于FEM-DFN的页岩气井复杂裂缝扩展与优化——以长宁页岩气藏X1水平井组为例. 断块油气田. 2024(03): 415-423 .
    11. 刘惠民,王敏生,李中超,陈宗琦,艾昆,王运海,毛怡,闫娜. 中国页岩油勘探开发面临的挑战与高效运营机制研究. 石油钻探技术. 2024(03): 1-10 . 本站查看
    12. 郑马嘉,郭兴午,伍亚,赵文韬,邓琪,谢维扬,欧志鹏. 四川盆地德阳—安岳裂陷槽寒武系筇竹寺组超深层页岩气地质工程一体化高产井培育实践与勘探突破. 中国石油勘探. 2024(03): 58-68 .
    13. 项远铠,张谷畅,承宁,马俊修,张建军,王博. 深层砂砾岩整体压裂矿场试验研究. 断块油气田. 2024(05): 922-929 .
    14. 沈童,卢文涛,郑爱维,王立,常振. 四川盆地复兴地区侏罗系陆相页岩油可采储量评价方法. 天然气勘探与开发. 2024(05): 39-47 .
    15. 刘合,慕立俊,齐银,陈文斌,拜杰,涂志勇. 基于光纤监测的分段压裂多簇均衡性评价与优化建议. 钻采工艺. 2024(06): 1-7 .
    16. 江智强,王治国,李紫莉,韩巧荣,李在顺,何淼,周少伟. 氮气泡沫压裂优化设计与应用实践. 钻采工艺. 2024(06): 76-82 .
    17. 张矿生,慕立俊,陆红军,齐银,薛小佳,拜杰. 鄂尔多斯盆地页岩油水力压裂试验场建设概述及实践认识. 钻采工艺. 2024(06): 16-27 .
    18. 张翔宇,于田田,李爱芬,张仲平,郑万刚,初伟,马爱青,冯海顺. 低渗透夹层分布对正韵律非均质储层渗流规律的影响. 特种油气藏. 2024(05): 102-109 .
    19. 刘星,邱建,陈作,张旭东,李双明,齐自立. 基于八叉树网格的页岩压裂复杂缝网面积计算方法. 石油钻探技术. 2024(06): 117-125 . 本站查看
    20. 马立军,王骁睿,赵倩倩,姬靖皓. 页岩油环保型开发策略实现资源开发和环境保护协调发展. 石油钻采工艺. 2024(05): 635-650 .
    21. 张冕,陶长州,左挺. 页岩油华H100平台储层改造关键技术及实践. 钻采工艺. 2023(06): 53-58 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (233) PDF downloads (75) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return