Citation: | ZHAO Jin, ZHAO Xing, CAI Peng, et al. Development of coiled tubing jet tools with multi-hole nozzles and cleaning parameter optimization [J]. Petroleum Drilling Techniques,2023, 51(3):83-89. DOI: 10.11911/syztjs.2023061 |
To solve the problem of poor cleaning effects caused by incorrect matching of coiled tubing (CT) sizes with nozzle jet parameters and pumper parameters, the influences of jet velocities, nozzle diameters, number of nozzles, movement velocities, and scale removers on tubing cleaning effects were studied through laboratory experiments by simulating the matching relationship among CTs, nozzle combinations, and hydraulic parameters of pumpers. Based on the analysis results, a new type of multi-hole jet cleaning tool was designed, and the parameters of which were optimized. The research shows that under the condition that the string is safe, and the space in the tubing is large, the CT with a large size can be selected to reduce the friction in the tubing and increase the flow return velocity. For the scale removing of ϕ73 mm tubing with the well depth of less than 3000 m, the optimal construction displacement can be obtained by selecting a ϕ50.8 mm CT,a pumper plunger diameter of 114.3 mm, a pump speed of 90 min−1, and a power of 580 kW. For the scale removing of tubing in Qigequan Oilfield, clean water was mixed with hydrochloric acid of 5% and a scale remover of 1%, the jet scale removing tool was equipped with five ϕ3.5 mm nozzles. In that case, the construction displacement is 550–600 L/min, and the movement velocity is 5 m/min. The results shows a good scale removing effect. CT jet scale removing technology is safe, environmentally friendly, and pollution-free, it has a great prospect for broad application.
[1] |
沈晓明,李根生,马加计,等. 油管结垢机理及水力清垢技术研究[J]. 石油钻探技术,1996,24(3):43–45.
SHEN Xiaoming, LI Gensheng, MA Jiaji, et al. Study on scaling mechanism and hydraulic cleaning technology of tubing[J]. Petroleum Drilling Techniques, 1996, 24(3): 43–45.
|
[2] |
彭兴,周玉仓,朱智超,等. 延川南深部煤层气井防漏堵漏技术[J]. 石油钻探技术,2021,49(1):47–52. doi: 10.11911/syztjs.2020133
PENG Xing, ZHOU Yucang, ZHU Zhichao, et al. Antileaking and lost circulation control technology for deep coalbed methane well in the Yanchuannan Block[J]. Petroleum Drilling Techniques, 2021, 49(1): 47–52. doi: 10.11911/syztjs.2020133
|
[3] |
张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13.
ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13.
|
[4] |
张启龙,许杰,高斌,等. 以抑制管柱结垢腐蚀为目标的注水井水源选择方法研究及应用[J]. 表面技术,2019,48(11):290–296.
ZHANG Qilong, XU Jie, GAO Bin, et al. Research and application of water source selection method for water injection well aiming at inhibiting scaling and corrosion of pipe string[J]. Surface Technology, 2019, 48(11): 290–296.
|
[5] |
弓永军. 磨料水射流切割技术研究现状及其发展趋势[J]. 液压与气动,2016(10):1–5.
GONG Yongjun. Research status and development trend of abrasive water jet cutting technology[J]. Chinese Hydraulics & Pneumatics, 2016(10): 1–5.
|
[6] |
李敬彬,李根生,黄中伟,等. 新型旋转射流多孔喷嘴流场的分析[J]. 流体机械,2015,43(7):32–36.
LI Jingbin, LI Gensheng, HUANG Zhongwei, et al. Flow field study on a new kind swirling multi-orifices nozzle[J]. Fluid Machinery, 2015, 43(7): 32–36.
|
[7] |
李根生,马加骥,陈洪兵,等. 高压水射流清除油管结垢的研究[J]. 石油钻采工艺,1995,17(2):61–64.
LI Gensheng, MA Jiaji, CHEN Hongbing, et al. Study on the descaling of calcium carbonate on water-injection pipeline by high pressure water jet[J]. Oil Drilling & Production Technology, 1995, 17(2): 61–64.
|
[8] |
张逸群,胡萧,武晓亚,等. 旋转射流冲蚀天然气水合物试验及数值模拟研究[J]. 石油钻探技术,2022,50(3):24–33. doi: 10.11911/syztjs.2022046
ZHANG Yiqun, HU Xiao, WU Xiaoya, et al. Experimental and numerical simulation study of natural gas hydrate erosion by swirling jet[J]. Petroleum Drilling Techniques, 2022, 50(3): 24–33. doi: 10.11911/syztjs.2022046
|
[9] |
武晓光,黄中伟,李根生,等. “连续管+柔性钻具” 超短半径水平井钻井技术研究与现场试验[J]. 石油钻探技术,2022,50(6):56–63.
WU Xiaoguang, HUANG Zhongwei, LI Gensheng, et al. Research and field test of ultra-short radius horizontal drilling technology combining coiled tubing and flexible BHA[J]. Petroleum Drilling Techniques, 2022, 50(6): 56–63.
|
[10] |
ESPINOSA G M A, LEAL J A, DRIWEESH S M, et al. First time live descaling operation in Saudi using coiled tubing fiber optic real-time telemetry rugged tool, foamed fluid and pressure fluid management system[R]. SPE 182763, 2016.
|
[11] |
DELGADO E, RODRIGUES V, FAGUNDES L. Customized subsea production flowline cleanout with coiled tubing from a floating production storage and offloading vessel[R]. SPE 199836, 2020.
|
[12] |
ALDUAIJ A N, AL-BENSAAD Z, ESPINOSA M, et al. Recent enhancements for coiled tubing descaling treatments in Middle East[R]. SPE 205891, 2021.
|
[13] |
HASSIG FONSECA S, SERRANO D, VILLACRES C, et al. Methodology to remediate and evaluate surface flowline capacity with coiled tubing cleanouts[J]. SPE Production & Operations, 2022, 37(3): 520–532.
|
[14] |
李晓红, 卢义玉, 向文英. 水射流理论及在矿业工程中的应用[M]. 重庆: 重庆大学出版社, 2007: 1 − 2.
LI Xiaohong, LU Yiyu, XIANG Wenying. Water jet theory and its application in mining engineering[M]. Chongqing: Chongqing University Press, 2007: 1 − 2.
|
[15] |
薛永志. 高压水射流冲击下煤岩损伤诱导机制及分布特性研究[D]. 重庆: 重庆大学, 2018.
XUE Yongzhi. Study on the inducement and distribution of damage in coal impacted by high pressure water jets[D]. Chongqing: Chongqing University, 2018.
|
[16] |
邹德永, 陈雅辉, 赵方圆, 等. 斧形PDC齿破岩规律数值模拟研究[J]. 特种油气藏, 2021, 28(6): 137 − 143.
ZOU Deyong, CHEN Yahui, ZHAO Fangyuan, et al. Study on rock breaking rules of axe-shaped PDC cutter with numerical simula-tion[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 137 − 143.
|
[17] |
ZHAO Jian, ZHANG Guicai, XU Yiji, et al. Mechanism and effect of jet parameters on particle waterjet rock breaking[J]. Powder Technology, 2017, 313: 231–244. doi: 10.1016/j.powtec.2017.03.026
|
[18] |
柳军,杜智刚,牟少敏,等. 连续油管分簇射孔管柱通过能力分析模型及影响因素研究[J]. 特种油气藏,2022,29(5):139–148. doi: 10.3969/j.issn.1006-6535.2022.05.020
LIU Jun, DU Zhigang, MU Shaomin, et al. Analysis model and influencing factors of passability of coiled tubing conveying clustered perforating string[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 139–148. doi: 10.3969/j.issn.1006-6535.2022.05.020
|
[19] |
庞德新,艾白布·阿不力米提,焦文夫,等. 超深气井连续油管多径组合管柱作业新工艺[J]. 天然气工业,2021,41(3):112–118.
PANG Dexin, ABULIMITI Aibaibu, JIAO Wenfu, et al. A new technology for the multi-diameter combination operation of coiled tubing in ultra-deep gas wells[J]. Natural Gas Industry, 2021, 41(3): 112–118.
|
[20] |
TEIMOURIAN R, SHABGARD M R, MOMBER A W. De-painting with high-speed water jets: Paint removal process and substrate surface roughness[J]. Progress in Organic Coatings, 2010, 69(4): 455–462. doi: 10.1016/j.porgcoat.2010.08.010
|
[21] |
TAYLO R, CHAPMAN G. Cleaning pipelines using high-pressure water jets[J]. Materials Performance, 1991, 30(9): 25–28.
|
[22] |
陈庭根, 管志川. 钻井工程理论与技术[M]. 东营: 中国石油大学出版社, 2000: 142−162.
CHEN Tinggen, GUAN Zhichuan. Drilling engineering theory and technology[M]. Dongying: China University of Petroleum Press, 2000: 142−162.
|
[23] |
田野,蒋东雷,马传华,等. 钻柱偏心旋转对环空摩阻压降影响的数值模拟研究[J]. 石油钻探技术,2022,50(5):42–49. doi: 10.11911/syztjs.2022104
TIAN Ye, JIANG Donglei, MA Chuanhua, et al. Numerical simulation of the effects of eccentric rotation of the drill string on annular frictional pressure drop[J]. Petroleum Drilling Techniques, 2022, 50(5): 42–49. doi: 10.11911/syztjs.2022104
|
[1] | ZANG Chuanzhen, JING Silin, LU Zongyu, SONG Xianzhi, WU Xingyong. Cuttings Removal Efficiency for Slim-Hole Horizontal Well Washing[J]. Petroleum Drilling Techniques, 2024, 52(3): 75-83. DOI: 10.11911/syztjs.2024009 |
[2] | WANG Wenchang, XU Zukai, ZHOU Xing, WANG Zhaobin, CHEN Feng. Dynamic Fatigue Failure Characteristics and Parameter Optimization ofDrill Strings in Ultra-Deep Wells[J]. Petroleum Drilling Techniques, 2024, 52(2): 118-125. DOI: 10.11911/syztjs.2024033 |
[3] | LIU Huanle, XUE Shifeng, SUN Zhiyang, ZHOU Chao, FAN Jie. Structural Parameter Optimization and Field Test of a Jetting and Helical Combination Drain Tool[J]. Petroleum Drilling Techniques, 2023, 51(3): 90-96. DOI: 10.11911/syztjs.2022116 |
[4] | CHEN Zhiming, ZHAO Pengfei, CAO Nai, LIAO Xinwei, WANG Jianan, LIU Hui. Fracturing Parameters Optimization of Horizontal Wells in Shale Reservoirsduring "Well Fracturing-Soaking-Producing"[J]. Petroleum Drilling Techniques, 2022, 50(2): 30-37. DOI: 10.11911/syztjs.2022005 |
[5] | CHEN Cunliang, MA Kuiqian, WANG Xiang, YUE Honglin, WU Xiaohui. Research on the Planar Equilibrium Displacement Based on Maximum Water Injection Efficiency[J]. Petroleum Drilling Techniques, 2021, 49(3): 124-128. DOI: 10.11911/syztjs.2021028 |
[6] | SU Zhenguo, TANG Zhijun. The Design and Field Testing of Two-Stage and Two-Speed Drilling Tools[J]. Petroleum Drilling Techniques, 2019, 47(1): 59-64. DOI: 10.11911/syztjs.2019010 |
[7] | SHAO Dongdong, LI Wei, JIANG Xiaoping, LIU Ya, LIU Sihan. Performance Analysis and Optimization of a Pulse Jet Drilling Tool with an Impeller-Type Bottom Hole Disc Valve[J]. Petroleum Drilling Techniques, 2017, 45(2): 68-75. DOI: 10.11911/syztjs.201702011 |
[8] | Zuo Weiqin, Li Xuelian, Lu Yiyu, Liu Yong. Key Parameters of Removing Blockage with Rotating Jets and Sand-Tubes[J]. Petroleum Drilling Techniques, 2014, 42(6): 92-96. DOI: 10.11911/syztjs.201406018 |
[9] | Jiang Zengdong, Wang Guanglei, Wang Wanjun, Yue Ting, Lu Shifen. Development of Cementing Evaluation Equipment DCX for Flushing Efficiency[J]. Petroleum Drilling Techniques, 2013, 41(3): 127-129. DOI: 10.3969/j.issn.1001-0890.2013.03.025 |
[10] | Wang Jiachang, Zhang Jincheng, Zhao Guoshun, Xiao Qi. Practice of 35 MPa High Pressure Jet Drilling[J]. Petroleum Drilling Techniques, 2012, 40(6): 22-26. DOI: 10.3969/j.issn.1001-0890.2012.06.005 |
1. |
徐忠良,李悦悦. Hoek-Brown准则在致密砂岩弹性参数测井解释中的应用. 中国石油和化工标准与质量. 2017(12): 67-68 .
![]() | |
2. |
邢岳堃,张广清,李世远,王元元,杨潇. 套损井与取心井相似井段识别及其岩石力学参数确定方法. 石油钻探技术. 2017(04): 33-40 .
![]() | |
3. |
尹帅,丁文龙,高敏东,周广照. 樊庄北部3号煤层现今应力场分布数值模拟. 西南石油大学学报(自然科学版). 2017(04): 81-89 .
![]() | |
4. |
尹帅,丁文龙,张宁洁,谢非,焦乃林. Hoek-Brown准则在致密砂岩抗剪强度参数测井解释中的应用. 测井技术. 2016(01): 91-97 .
![]() | |
5. |
侯连浪,梁利喜,刘向君,熊健. 基于BP神经网络的页岩静弹性模量预测研究. 科学技术与工程. 2016(30): 176-180+195 .
![]() | |
6. |
尹帅,丁文龙,李昂,赵金利,单钰铭. 裂缝对致密碎屑岩储层弹性影响的数值分析. 石油钻探技术. 2016(02): 112-118 .
![]() | |
7. |
丁文龙,王兴华,胡秋嘉,尹帅,曹翔宇,刘建军. 致密砂岩储层裂缝研究进展. 地球科学进展. 2015(07): 737-750 .
![]() | |
8. |
丁文龙,尹帅,王兴华,张宁洁,张敏,曹翔宇. 致密砂岩气储层裂缝评价方法与表征. 地学前缘. 2015(04): 173-187 .
![]() | |
9. |
尹帅,丁文龙,赵威,孙圆辉,袁江如,丛森. 基于阵列声波测井的海陆过渡相碎屑岩地层裂缝识别方法. 石油钻探技术. 2015(05): 75-82 .
![]() | |
10. |
尹帅,丁文龙,王濡岳,赵金利,刘建军,张宁洁. 陆相致密砂岩及泥页岩储层纵横波波速比与岩石物理参数的关系及表征方法. 油气地质与采收率. 2015(03): 22-28 .
![]() |