Citation: | ZHAO Jin, ZHAO Xing, CAI Peng, et al. Development of coiled tubing jet tools with multi-hole nozzles and cleaning parameter optimization [J]. Petroleum Drilling Techniques,2023, 51(3):83-89. DOI: 10.11911/syztjs.2023061 |
To solve the problem of poor cleaning effects caused by incorrect matching of coiled tubing (CT) sizes with nozzle jet parameters and pumper parameters, the influences of jet velocities, nozzle diameters, number of nozzles, movement velocities, and scale removers on tubing cleaning effects were studied through laboratory experiments by simulating the matching relationship among CTs, nozzle combinations, and hydraulic parameters of pumpers. Based on the analysis results, a new type of multi-hole jet cleaning tool was designed, and the parameters of which were optimized. The research shows that under the condition that the string is safe, and the space in the tubing is large, the CT with a large size can be selected to reduce the friction in the tubing and increase the flow return velocity. For the scale removing of ϕ73 mm tubing with the well depth of less than 3000 m, the optimal construction displacement can be obtained by selecting a ϕ50.8 mm CT,a pumper plunger diameter of 114.3 mm, a pump speed of 90 min−1, and a power of 580 kW. For the scale removing of tubing in Qigequan Oilfield, clean water was mixed with hydrochloric acid of 5% and a scale remover of 1%, the jet scale removing tool was equipped with five ϕ3.5 mm nozzles. In that case, the construction displacement is 550–600 L/min, and the movement velocity is 5 m/min. The results shows a good scale removing effect. CT jet scale removing technology is safe, environmentally friendly, and pollution-free, it has a great prospect for broad application.
[1] |
沈晓明,李根生,马加计,等. 油管结垢机理及水力清垢技术研究[J]. 石油钻探技术,1996,24(3):43–45.
SHEN Xiaoming, LI Gensheng, MA Jiaji, et al. Study on scaling mechanism and hydraulic cleaning technology of tubing[J]. Petroleum Drilling Techniques, 1996, 24(3): 43–45.
|
[2] |
彭兴,周玉仓,朱智超,等. 延川南深部煤层气井防漏堵漏技术[J]. 石油钻探技术,2021,49(1):47–52. doi: 10.11911/syztjs.2020133
PENG Xing, ZHOU Yucang, ZHU Zhichao, et al. Antileaking and lost circulation control technology for deep coalbed methane well in the Yanchuannan Block[J]. Petroleum Drilling Techniques, 2021, 49(1): 47–52. doi: 10.11911/syztjs.2020133
|
[3] |
张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13.
ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13.
|
[4] |
张启龙,许杰,高斌,等. 以抑制管柱结垢腐蚀为目标的注水井水源选择方法研究及应用[J]. 表面技术,2019,48(11):290–296.
ZHANG Qilong, XU Jie, GAO Bin, et al. Research and application of water source selection method for water injection well aiming at inhibiting scaling and corrosion of pipe string[J]. Surface Technology, 2019, 48(11): 290–296.
|
[5] |
弓永军. 磨料水射流切割技术研究现状及其发展趋势[J]. 液压与气动,2016(10):1–5.
GONG Yongjun. Research status and development trend of abrasive water jet cutting technology[J]. Chinese Hydraulics & Pneumatics, 2016(10): 1–5.
|
[6] |
李敬彬,李根生,黄中伟,等. 新型旋转射流多孔喷嘴流场的分析[J]. 流体机械,2015,43(7):32–36.
LI Jingbin, LI Gensheng, HUANG Zhongwei, et al. Flow field study on a new kind swirling multi-orifices nozzle[J]. Fluid Machinery, 2015, 43(7): 32–36.
|
[7] |
李根生,马加骥,陈洪兵,等. 高压水射流清除油管结垢的研究[J]. 石油钻采工艺,1995,17(2):61–64.
LI Gensheng, MA Jiaji, CHEN Hongbing, et al. Study on the descaling of calcium carbonate on water-injection pipeline by high pressure water jet[J]. Oil Drilling & Production Technology, 1995, 17(2): 61–64.
|
[8] |
张逸群,胡萧,武晓亚,等. 旋转射流冲蚀天然气水合物试验及数值模拟研究[J]. 石油钻探技术,2022,50(3):24–33. doi: 10.11911/syztjs.2022046
ZHANG Yiqun, HU Xiao, WU Xiaoya, et al. Experimental and numerical simulation study of natural gas hydrate erosion by swirling jet[J]. Petroleum Drilling Techniques, 2022, 50(3): 24–33. doi: 10.11911/syztjs.2022046
|
[9] |
武晓光,黄中伟,李根生,等. “连续管+柔性钻具” 超短半径水平井钻井技术研究与现场试验[J]. 石油钻探技术,2022,50(6):56–63.
WU Xiaoguang, HUANG Zhongwei, LI Gensheng, et al. Research and field test of ultra-short radius horizontal drilling technology combining coiled tubing and flexible BHA[J]. Petroleum Drilling Techniques, 2022, 50(6): 56–63.
|
[10] |
ESPINOSA G M A, LEAL J A, DRIWEESH S M, et al. First time live descaling operation in Saudi using coiled tubing fiber optic real-time telemetry rugged tool, foamed fluid and pressure fluid management system[R]. SPE 182763, 2016.
|
[11] |
DELGADO E, RODRIGUES V, FAGUNDES L. Customized subsea production flowline cleanout with coiled tubing from a floating production storage and offloading vessel[R]. SPE 199836, 2020.
|
[12] |
ALDUAIJ A N, AL-BENSAAD Z, ESPINOSA M, et al. Recent enhancements for coiled tubing descaling treatments in Middle East[R]. SPE 205891, 2021.
|
[13] |
HASSIG FONSECA S, SERRANO D, VILLACRES C, et al. Methodology to remediate and evaluate surface flowline capacity with coiled tubing cleanouts[J]. SPE Production & Operations, 2022, 37(3): 520–532.
|
[14] |
李晓红, 卢义玉, 向文英. 水射流理论及在矿业工程中的应用[M]. 重庆: 重庆大学出版社, 2007: 1 − 2.
LI Xiaohong, LU Yiyu, XIANG Wenying. Water jet theory and its application in mining engineering[M]. Chongqing: Chongqing University Press, 2007: 1 − 2.
|
[15] |
薛永志. 高压水射流冲击下煤岩损伤诱导机制及分布特性研究[D]. 重庆: 重庆大学, 2018.
XUE Yongzhi. Study on the inducement and distribution of damage in coal impacted by high pressure water jets[D]. Chongqing: Chongqing University, 2018.
|
[16] |
邹德永, 陈雅辉, 赵方圆, 等. 斧形PDC齿破岩规律数值模拟研究[J]. 特种油气藏, 2021, 28(6): 137 − 143.
ZOU Deyong, CHEN Yahui, ZHAO Fangyuan, et al. Study on rock breaking rules of axe-shaped PDC cutter with numerical simula-tion[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 137 − 143.
|
[17] |
ZHAO Jian, ZHANG Guicai, XU Yiji, et al. Mechanism and effect of jet parameters on particle waterjet rock breaking[J]. Powder Technology, 2017, 313: 231–244. doi: 10.1016/j.powtec.2017.03.026
|
[18] |
柳军,杜智刚,牟少敏,等. 连续油管分簇射孔管柱通过能力分析模型及影响因素研究[J]. 特种油气藏,2022,29(5):139–148. doi: 10.3969/j.issn.1006-6535.2022.05.020
LIU Jun, DU Zhigang, MU Shaomin, et al. Analysis model and influencing factors of passability of coiled tubing conveying clustered perforating string[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 139–148. doi: 10.3969/j.issn.1006-6535.2022.05.020
|
[19] |
庞德新,艾白布·阿不力米提,焦文夫,等. 超深气井连续油管多径组合管柱作业新工艺[J]. 天然气工业,2021,41(3):112–118.
PANG Dexin, ABULIMITI Aibaibu, JIAO Wenfu, et al. A new technology for the multi-diameter combination operation of coiled tubing in ultra-deep gas wells[J]. Natural Gas Industry, 2021, 41(3): 112–118.
|
[20] |
TEIMOURIAN R, SHABGARD M R, MOMBER A W. De-painting with high-speed water jets: Paint removal process and substrate surface roughness[J]. Progress in Organic Coatings, 2010, 69(4): 455–462. doi: 10.1016/j.porgcoat.2010.08.010
|
[21] |
TAYLO R, CHAPMAN G. Cleaning pipelines using high-pressure water jets[J]. Materials Performance, 1991, 30(9): 25–28.
|
[22] |
陈庭根, 管志川. 钻井工程理论与技术[M]. 东营: 中国石油大学出版社, 2000: 142−162.
CHEN Tinggen, GUAN Zhichuan. Drilling engineering theory and technology[M]. Dongying: China University of Petroleum Press, 2000: 142−162.
|
[23] |
田野,蒋东雷,马传华,等. 钻柱偏心旋转对环空摩阻压降影响的数值模拟研究[J]. 石油钻探技术,2022,50(5):42–49. doi: 10.11911/syztjs.2022104
TIAN Ye, JIANG Donglei, MA Chuanhua, et al. Numerical simulation of the effects of eccentric rotation of the drill string on annular frictional pressure drop[J]. Petroleum Drilling Techniques, 2022, 50(5): 42–49. doi: 10.11911/syztjs.2022104
|
1. |
李舒展,杨进,朱国倞,黄熠,张珣,万宏宇. 水下井口吸力桩极限贯入深度研究. 中国海上油气. 2024(02): 185-194 .
![]() | |
2. |
傅超,杨进,刘华清,殷启帅,王磊,胡志强. 多维度深水浅层建井方式优选方法研究. 石油钻探技术. 2024(03): 40-46 .
![]() | |
3. |
李舒展,杨进,朱国倞,黄熠,王宁,万宏宇,马会珍. 深水钻井井口吸力桩稳定性计算和校核方法. 石油钻采工艺. 2024(01): 13-24 .
![]() | |
4. |
刘书杰,李文拓,徐一龙,刘正,李清平,李君,曾春珉. 海洋水下钻井井口疲劳损伤性能设计方法. 石化技术. 2024(09): 114-116 .
![]() | |
5. |
李文拓,刘书杰,徐一龙,于晓东,李清平,徐楷,曾春珉. 海洋井口吸力桩的下入安装施工流程研究. 石化技术. 2024(10): 101-103 .
![]() | |
6. |
罗鸣,刘书杰,李文拓,李清平,周思琦,曾春珉. 海洋双井口吸力桩井口间距设计方法. 石化技术. 2024(11): 127-129 .
![]() |