JIA Zhiwei, CHENG Changkun, ZHU Xiuyu, PU Lantian, HAN Yu, HU Futang. Oil Recovery Enhancement by Composite Flooding Technology for Gasi N1–N21 Ultra-High-Salinity Reservoir in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 81-87. DOI: 10.11911/syztjs.2021121
Citation: JIA Zhiwei, CHENG Changkun, ZHU Xiuyu, PU Lantian, HAN Yu, HU Futang. Oil Recovery Enhancement by Composite Flooding Technology for Gasi N1–N21 Ultra-High-Salinity Reservoir in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 81-87. DOI: 10.11911/syztjs.2021121

Oil Recovery Enhancement by Composite Flooding Technology for Gasi N1–N21 Ultra-High-Salinity Reservoir in Qinghai Oilfield

More Information
  • Received Date: December 13, 2020
  • Revised Date: August 17, 2021
  • Available Online: September 15, 2021
  • The salinity and the content of calcium and magnesium ions are ultra-high in the formation water of Gasi N1–N21 reservoir in Qinghai Oilfield. While using gel and surfactant composite flooding, conventional gels are prone to dehydrate and break, showing poor long-term stability. Meanwhile, conventional surfactants are easy to react with the calcium and magnesium ions in formation water to cause precipitation. In view of this, a high-salinity-resistant organogel suitable for Gasi N1–N21 reservoir was developed, which consisted of polymer (0.3%–0.4%) + crosslinking agent (0.2%–0.3%) + stabilizer (0.1%–0.2%). The initial setting time of the system was longer than 70 h at 68 ℃, and the viscosity after gelling was greater than 1.0×104 mPa·s. What's more, a high-salinity-resistant surfactant QH-1 was optimized, and the interfacial tension and oil displacement effect were evaluated, witha finding that the QH-1 solution with a mass fraction of 0.4% could enhance the oil recovery by 18.72%. The laboratory test results indicated that alternate injection of the high-salinity-resistant organogel and QH-1 could effectively curb the ineffective water circulation and improve the oil displacement efficiency in the low and medium permeability areas. Notably, the optimized “gel + QH-1” composite flooding was capable of enhancing oil recovery by more than 27.6%. The composite flooding was applied to 9 water-injection wells in Gasi N1–N21 reservoir. As a result, the average water cut of these oil wells decreased from 80% to 70%, and the oil production increased by 2.41 × 104 t. The research results show that the oil recovery enhancement by “gel + QH-1” composite flooding is effective in enhancing oil production and decreasing water cut in Gasi N1–N21 ultra-high-salinity reservoir, so it is worthy of promotion and application.
  • [1]
    梁丹,吕鑫,蒋珊珊,等. 渤海油田分级组合深部调剖技术[J]. 石油钻探技术,2015,43(2):104–109.

    LIANG Dan, LYU Xin, JIANG Shanshan, et al. The technology of classified combination of deep profile control in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(2): 104–109.
    [2]
    张贵清,孙磊,夏烨,等. 耐贮存改性酚醛树脂交联剂的合成及性能评价[J]. 石油钻探技术,2017,45(6):99–104.

    ZHANG Guiqing, SUN Lei, XIA Ye, et al. Synthesis and property evaluation of storable modified phenolic resin cross-linking agent[J]. Petroleum Drilling Techniques, 2017, 45(6): 99–104.
    [3]
    付国强,王克亮. 水驱后凝胶与表活剂交替注入驱油效果[J]. 当代化工,2016,45(3):495–497. doi: 10.3969/j.issn.1671-0460.2016.03.020

    FU Guoqiang, WANG Keliang. Oil displacement effect of alternative injection of gel and surfactant after water flooding[J]. Contemporary Chemical Industry, 2016, 45(3): 495–497. doi: 10.3969/j.issn.1671-0460.2016.03.020
    [4]
    石延辉,王帅,张绍辉. 调剖+表活剂驱油综合治理多裂缝非均质复杂油藏[J]. 石油工业技术监督,2018,34(6):40–42. doi: 10.3969/j.issn.1004-1346.2018.06.012

    SHI Yanhui, WANG Shuai, ZHANG Shaohui. Comprehensive control of multi-fractured heterogeneous complex reservoirs by profile control and surfactant flooding[J]. Technology Supervision in Petroleum Industry, 2018, 34(6): 40–42. doi: 10.3969/j.issn.1004-1346.2018.06.012
    [5]
    白宝君,周佳,印鸣飞. 聚丙烯酰胺类聚合物凝胶改善水驱波及技术现状及展望[J]. 石油勘探与开发,2015,42(4):481–487.

    BAI Baojun, ZHOU Jia, YIN Mingfei. A comprehensive review of polyacrylamide polymer gels for conformance control[J]. Petroleum Exloration and Development, 2015, 42(4): 481–487.
    [6]
    张兵,蒲春生,于浩然,等. 裂缝性油藏多段塞凝胶调剖技术研究与应用[J]. 油田化学,2016,33(1):46–50.

    ZHANG Bing, PU Chunsheng, YU Haoran, et al. Research and application of multi-slug gel profile control technology in fractured reservoirs[J]. Oilfield Chemistry, 2016, 33(1): 46–50.
    [7]
    宋官龙. 适合低渗高盐油藏的表面活性剂复配体系及性能研究[J]. 油田化学,2016,33(1):99–102.

    SONG Guanlong. Performance evaluation of mixed surfactants for EOR in high salinity and low permeability reservoirs[J]. Oilfield Chemistry, 2016, 33(1): 99–102.
    [8]
    陈斌,曹小华,周亮,等. 适用于高温高盐低渗砂岩油藏的表面活性剂驱油体系[J]. 钻采工艺,2021,44(3):87–91.

    CHEN Bin, CAO Xiaohua, ZHOU Liang, et al. Surfactant flooding system for high temperature and high salinity of low permeability sandstone reservoirs[J]. Drilling & Production Technology, 2021, 44(3): 87–91.
    [9]
    于萌,铁磊磊,李翔,等. 海上油田剖面调整用分散共聚物颗粒体系的研制[J]. 石油钻探技术,2020,48(2):118–122. doi: 10.11911/syztjs.2020019

    YU Meng, TIE Leilei, LI Xiang, et al. Development of dispersed copolymer particle system for profile control in offshore oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 118–122. doi: 10.11911/syztjs.2020019
    [10]
    卢祥国,王树霞,王荣建,等. 深部液流转向剂与油藏适应性研究:以大庆喇嘛甸油田为例[J]. 石油勘探与开发,2011,38(5):576–582. doi: 10.1016/S1876-3804(11)60056-6

    LU Xiangguo, WANG Shuxia, WANG Rongjian, et al. Adaptability of a deep profile control agent to reservoirs: taking the Lamadian Oilfield in Daqing as an example[J]. Petroleum Exploration and Development, 2011, 38(5): 576–582. doi: 10.1016/S1876-3804(11)60056-6
    [11]
    王洋,韩国彤,葛际江,等. 表面活性剂提高碳酸盐岩油藏采收率进展[J]. 油田化学,2015,32(2):301–306,316.

    WANG Yang, HAN Guotong, GE Jijiang, et al. Research progress of enhanced oil recovery with surfactants in carbonate reservoirs[J]. Oilfield Chemistry, 2015, 32(2): 301–306,316.
    [12]
    潘斌林. APEC(Na)降低油水界面张力影响因素研究[J]. 油田化学,2014,31(1):95–98.

    PAN Binlin. Influencing factors of APEC(Na) on reducing interfacial tension[J]. Oilfield Chemistry, 2014, 31(1): 95–98.
    [13]
    LIU Yifei, DAI Caili, WANG Kai, et al. New insights into the hydroquinone (HQ)-hexamethylenetetramine (HMTA) gel system for water shut-off treatment in high temperature reservoirs[J]. Journal of Industrial and Engineering Chemistry, 2016, 35: 20–28. doi: 10.1016/j.jiec.2015.09.032
    [14]
    张绍东,付继彤,姚军,等. 重质石油磺酸盐化学驱方案设计方法研究及应用[J]. 石油大学学报(自然科学版),2002,26(4):48–50.

    ZHANG Shaodong, FU Jitong, YAO Jun, et al. Design and application of chemical displacement pilot with weighted petroleum sulfonate[J]. Journal of China University of Petroleum(Edition of Natural Science), 2002, 26(4): 48–50.
    [15]
    张永强,赫文秀. 阳离子碳氟与阴离子碳氢表面活性剂复配体系的性质[J]. 精细石油化工,2014,31(3):63–67. doi: 10.3969/j.issn.1003-9384.2014.03.015

    ZHANG Yongqiang, HE Wenxiu. Properties of mixed system of fluorocarbon cationic surfactant and hydrocarbon anionic surfac-tant[J]. Speciality Petrochemicals, 2014, 31(3): 63–67. doi: 10.3969/j.issn.1003-9384.2014.03.015
  • Related Articles

    [1]ZHANG Yan, FENG Haishun, ZHAI Yong, ZHOU Xiaomei, LIU Dongqing, WANG Kun. Mechanism and Law of CO2 Pressure Flooding in Enhancing Oil Recovery in Low-Permeability Heavy Oil Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(6): 97-106. DOI: 10.11911/syztjs.2024070
    [2]YUAN Dengyu. Experimental Study of CO2 Huff and Puff Combined with N2 Foam for Enhanced Oil Recovery by Three-Dimensional Physical Models[J]. Petroleum Drilling Techniques, 2022, 50(6): 126-132. DOI: 10.11911/syztjs.2022105
    [3]HOU Yawei, LIU Chao, XU Zhongbo, AN Yuhua, LI Jingling. A Method for Rapidly Predicting Recovery of Multi-Layer Oilfields Developed by Water-Flooding[J]. Petroleum Drilling Techniques, 2022, 50(5): 82-87. DOI: 10.11911/syztjs.2022102
    [4]MOU Hansheng, LU Wenming, CAO Changxiao, SONG Zhaojie, SHI Juntai, ZHANG Hong. Study on Enhanced Oil Recovery Method in Deep-Water Turbidite Reservoirs—A Case Study of X Reservoir in Angola[J]. Petroleum Drilling Techniques, 2021, 49(2): 79-89. DOI: 10.11911/syztjs.2021025
    [5]TAO Guanghui, SHU Huadong, LIU Bin. Ultra-High Molecular Weight Polymer Flooding Technology for Heavy Oil Reservoirs in Block B125 of the Gucheng Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 66-71. DOI: 10.11911/syztjs.2019127
    [6]ZHANG Li, YUE Xiang’an, WANG Youqi. Research on Large Scale Heterogeneous Model Based EOR Methods for Ultra-High Water Cut Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(5): 83-89. DOI: 10.11911/syztjs.2018078
    [7]LI Liang, ZHANG Jianjun, MA Shufen, WU Yajun, WU Guangsheng, GUO Na. Profile Control and Displacement Technique with N2 Foam in High-Temperature and High-Salinity Reservoirs of the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(5): 94-99. DOI: 10.11911/syztjs.201605016
    [8]ZOU Deyong, MENG Xiangyu, YUAN Jun, WANG Bin. A New Method for Bit Selection Based on Pattern Recognition[J]. Petroleum Drilling Techniques, 2016, 44(2): 40-45. DOI: 10.11911/syztjs.201602007
    [9]Liu Zhihong, Ju Binshan, Huang Yingsong, Wu Dan, Jia Junshan, Liu Haicheng. Experimental Study on Microscopic Water-Flooding to EOR of Remaining Oil through Changing Flow Direction[J]. Petroleum Drilling Techniques, 2015, 43(2): 90-96. DOI: 10.11911/syztjs.201202016
    [10]Dou Hongmei, Wang Longfei. An Inactive Water-Wet Film for Paraffin Inhibition in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(5): 93-97. DOI: 10.3969/j.issn.1001-0890.2013.05.018
  • Cited by

    Periodical cited type(6)

    1. 闫冬,曾奇灯,宫汝祥,曾浩见,彭丹,刘陆芃. 沉淀粒子调驱剂的研究与应用. 石油钻探技术. 2025(01): 122-129 . 本站查看
    2. 杨开吉,张颖,魏强,程艳,刘全刚. 海上油田开发用抗温抗盐乳液聚合物研制与性能评价. 石油钻探技术. 2024(04): 118-127 . 本站查看
    3. 姚光明,何刚,郭程飞,张立举. 剪切作用对乳状液性能及提高采收率的影响. 断块油气田. 2023(04): 665-671 .
    4. 郝文赫. 油田三类油层压裂驱油提高采收率技术及其应用. 化学工程与装备. 2023(09): 80-82 .
    5. 王武超,刘慧卿,东晓虎,陈掌星,李禹,王海涛. 热复合流体对堵剂颗粒沉降特性的影响. 油气地质与采收率. 2023(05): 119-129 .
    6. 俞天喜,王雷,陈蓓蓓,孙锡泽,李圣祥,朱振龙. 基于盐溶和蠕变作用的含盐储层裂缝导流能力变化规律研究与应用. 特种油气藏. 2023(06): 157-164 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (375) PDF downloads (47) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return