Citation: | YAN Dong, ZENG Qideng, GONG Ruxiang, et al. Study and application of precipitated particle profile control and displacement agent [J]. Petroleum Drilling Techniques, 2025, 53(1):122−129. DOI: 10.11911/syztjs.2025013 |
In the oilfield with a high salinity of injected water or formation water, the effect of polymer profile control and displacement agent is poor. To address this issue, a profile control and displacement system of “sodium silicate + dispersant” was designed. Together with calcium and magnesium ions in injected water or formation water, precipitated particles with a minimum particle size of less than 100 nm could be rapidly formed. Adjusting the concentration ratio of sodium silicate to dispersant could change the agglomeration degree of precipitated particles making the initial particle size controllable within 60.4 nm–3.85 μm, and controlling the dispersion time within 2–144 h which is feasible to accommodate reservoirs with different permeability. After the aggregation of precipitated particles, the final particle size of aggregates exceeded 70 μm, which could effectively block high-permeability channels and achieve deep fluid flow steering. The profile control and displacement system was tested in the P8 injection and production well group of an oilfield in the South China Sea. The salinity of injected water in this well group was 34 g/L, and the average injection pressure increased 2.9 MPa after 192 days of continuous injection of the precipitated particle profile control and displacement system. The water cut of the two affected wells was reduced by 4.6 and 17.8 percentage points, respectively, resulting in a cumulative oil gain of over 6 200 m3,with a valid period longer than 4 months. The research and field test show that the designed precipitated particle profile control and displacement system can solve the problem of poor profile control and displacement effects in oilfields with high salinity of injected water and provide technical support for oilfields with high salinity of injected water.
[1] |
朱怀江,孙尚如,罗健辉,等. 南阳油田驱油用聚合物的水动力学半径研究[J]. 石油钻采工艺,2005,27(6):47–50. doi: 10.3969/j.issn.1000-7393.2005.06.015
ZHU Huaijiang, SUN Shangru, LUO Jianhui, et al. Research on hydrodynamic radius of polymer molecule for oil displacement in Nanyang Oilfield[J]. Oil Drilling & Production Technology, 2005, 27(6): 47–50. doi: 10.3969/j.issn.1000-7393.2005.06.015
|
[2] |
钟万有,赵波,韩世寰,等. 高温高矿化度油藏深部调驱体系性能评价及应用[J]. 油田化学,2020,37(1):29–34.
ZHONG Wanyou, ZHAO Bo, HAN Shihuan, et al. Performance evaluation and application of deep oil displacement system in high temperature and high salinity reservoir[J]. Oilfield Chemistry, 2020, 37(1): 29–34.
|
[3] |
郭娜,梁珂,李亮,等. 塔河油田耐温抗盐驱油聚合物的筛选及性能评价[J]. 石油钻采工艺,2020,42(2):222–226.
GUO Na, LIANG Ke, LI Liang, et al. Screening and performance evaluation on temperature tolerant and salinity resistant polymer used in the Tahe Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(2): 222–226.
|
[4] |
石静,曹绪龙,王红艳,等. 胜利油田高温高盐稠油油藏复合驱技术[J]. 特种油气藏,2018,25(4):129–133. doi: 10.3969/j.issn.1006-6535.2018.04.026
SHI Jing, CAO Xulong, WANG Hongyan, et al. Combination flooding technology used in high-temperature, high-salinity heavy oil reservoirs of Shengli Oilfield[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 129–133. doi: 10.3969/j.issn.1006-6535.2018.04.026
|
[5] |
李吉,王江,吴文祥,等. 新型表面活性聚合物驱油剂的研制及应用[J]. 断块油气田,2020,27(6):803–807.
LI Ji, WANG Jiang, WU Wenxiang, et al. Development and application of novel surface-active polymer flooding agent [J]. Fault-Block Oil & Gas Field, 2020, 27(6): 803–807.
|
[6] |
李亮,方俊伟,彭博一,等. 塔河油田碳酸盐岩储层中聚合物凝胶堵漏技术[J]. 钻井液与完井液,2024,41(4):437–443.
LI Liang, FANG Junwei, PENG Boyi, et al. Control mud losses into carbonate reservoirs with polymer gels in Tahe Oilfield[J]. Drilling Fluid & Completion Fluid, 2024, 41(4): 437–443.
|
[7] |
刘学伟. 耐温抗盐型高效聚合物驱油剂的研制及应用[J]. 断块油气田,2020,27(4):474–477.
LIU Xuewei. Development and application of high efficiency polymer flooding agent with temperature and salt resistance[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 474–477.
|
[8] |
贾志伟,程长坤,朱秀雨,等. 青海油田尕斯 N1–N21超高盐油藏复合驱提高采收率技术[J]. 石油钻探技术,2021,49(5):81–87.
JIA Zhiwei, CHENG Changkun, ZHU Xiuyu, et al. Oil recovery enhancement by composite flooding technology for Gasi N1–N21 ultra-high-salinity reservoir in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 81–87.
|
[9] |
廖月敏,付美龙,杨松林. 耐温抗盐凝胶堵水调剖体系的研究与应用[J]. 特种油气藏,2019,26(1):159–162.
LIAO Yuemin, FU Meilong, YANG Songlin. Study and application of water plugging and profile control system of heat and salt resistant gel[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 159–162.
|
[10] |
曹伟佳, 卢祥国, 闫冬, 等. 海上油田深部调剖组合方式实验优选[J]. 中国海上油气,2018,30(5):103–108.
CAO Weijia, LU Xiangguo, YAN Dong, et al. Experimental optimization of deep profile control combination in offshore oilfields[J]. China Offshore Oil and Gas, 2018, 30(5): 103–108.
|
[11] |
殷慧,柳华杰,安朝峰,等. 水玻璃复合堵漏体系中氯化钙控释技术[J]. 钻井液与完井液,2024,41(2):239–245. doi: 10.12358/j.issn.1001-5620.2024.02.014
YIN Hui, LIU Huajie, AN Chaofeng, et al. Controlled release of calcium chloride from compounded waterglass-calcium chloride lost circulation material[J]. Drilling Fluid & Completion Fluid, 2024, 41(2): 239–245. doi: 10.12358/j.issn.1001-5620.2024.02.014
|
[12] |
赵彧,张桂意,崔洁,等. 无机凝胶调剖剂的研制及应用[J]. 特种油气藏,2006,13(3):86–88. doi: 10.3969/j.issn.1006-6535.2006.03.028
ZHAO Yu, ZHANG Guiyi, CUI Jie, et al. Development and application of inorganic gel profile control agent[J]. Special Oil & Gas Reservoirs, 2006, 13(3): 86–88. doi: 10.3969/j.issn.1006-6535.2006.03.028
|
[13] |
刘巍. 水溶性硅酸盐堵剂研究[D]. 青岛:中国石油大学(华东),2008.
LIU Wei. Research on water shut-off agents of soluble silicates[D]. Qingdao: China University of Petroleum(East China), 2008.
|
[14] |
李晓峰. 姬塬油田低渗透油藏堵水调剖技术完善[D]. 西安:西安石油大学,2015.
LI Xiaofeng. Jiyuan Oilfield low permeability reservoir water shutoff profile improvement[D]. Xi’an: Xi’an Shiyou University, 2015.
|
[15] |
巴文轩,王正良,王昌军. 抗高温复合凝胶堵漏剂的研究[J]. 钻井液与完井液,2021,38(6):728–731.
BA Wenxuan, WANG Zhengliang, WANG Changjun. Study on high temperature resistant compound gel plugging agent[J]. Drilling Fluid & Completion Fluid, 2021, 38(6): 728–731.
|
[16] |
黎凌,卫俊佚,张谦. 用于精细控压钻井的无机凝胶隔离塞的研制及现场试验[J]. 石油钻探技术,2019,47(1):45–51.
LI Ling, WEI Junyi, ZHANG Qian. Development and field testing of a gel Isolation plug for precise managed pressure drilling[J]. Petroleum Drilling Techniques, 2019, 47(1): 45–51.
|
[17] |
侯雅琦,沈敬尧,易达,等. 异丙基丙烯酰胺水凝胶纳米微球粒径的控制及其对多肽吸附的影响[J]. 化工学报,2020,71(增刊2):267–272.
HOU Yaqi, SHEN Jingyao, YI Da, et al. Influences on diameter of isopropylacrylamide hydrogel nanoparticles and its effect on peptide affinity[J]. CIESC Journal, 2020, 71(supplement 2): 267–272.
|
[18] |
郑皓华,邓雅洁,吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报,2022,36(19):21110079.
ZHENG Haohua, DENG Yajie, WU Zhilin. Research on surface modification technology of nano packaging materials and packaging morphological expressions[J]. Materials Reports, 2022, 36(19): 21110079.
|
[19] |
吴彤,叶建东. 超分散剂在制备α-Al2O3悬浮浆料中的应用研究[J]. 耐火材料,2018,52(4):292–295.
WU Tong, YE Jiandong. Application of hyperdispersant in preparation of α-Al2O3 suspension slurry[J]. Refractories, 2018, 52(4): 292–295.
|
[20] |
钱春霞,何权辉,赵朋,等. 液体分散染料的制备及分散剂的选择[J]. 染料与染色,2021,58(5):43–48.
QIAN Chunxia, HE Quanhui, ZHAO Peng, et al. Preparation of liquid disperse dyes and the dispersants used[J]. Dyestuffs and Coloration, 2021, 58(5): 43–48.
|
[21] |
孙霞,薛韬,余彩莉,等. 聚醚胺改性聚苯乙烯马来酸酐超分散剂的制备及其在分散TiO2中的应用[J]. 涂料工业,2024,54(5):39–44. doi: 10.12020/j.issn.0253-4312.2023-279
SUN Xia, XUE Tao, YU Caili, et al. Preparation of polyetheramine modified styrene-maleic anhydride hyperdispersant and its application in TiO2 dispersion[J]. Paint & Coatings Industry, 2024, 54(5): 39–44. doi: 10.12020/j.issn.0253-4312.2023-279
|
[22] |
邵雪峰. 异形TiO2粒子间空位作用下混合纳米悬浮液的分散稳定性[D]. 广州:广东工业大学,2016.
SHAO Xuefeng. Dispersion stability of hybrid nanosuspension containing differently shaped TiO2 nanoparticles under depletion interaction[D]. Guangzhou: Guangdong University of Technology, 2016.
|
[23] |
景希玮,公维光,冯中军,等. 梳型聚合物超分散剂的合成及其在有机介质中分散CaCO3的研究[J]. 华东理工大学学报(自然科学版),2017,43(6):777–783.
JING Xiwei, GONG Weiguang, FENG Zhongjun, et al. Synthesis of comb-like copolymer dispersant for dispersing CaCO3 in organic medium[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2017, 43(6): 777–783.
|
[24] |
刘志成. 固液界面间离子液体的双电层结构与力学特性研究[D]. 南京:东南大学,2018.
LIU Zhicheng. Research on electrical double-layer structure and mechanical properties of ionic liquids at solid-liquid interface[D]. Nanjing: Southeast University, 2018.
|
[25] |
庄占兴,路福绥,郭雯婷,等. 界面吸附理论与农药悬浮剂加工[J]. 山东化工,2018,47(12):60–62. doi: 10.3969/j.issn.1008-021X.2018.12.024
ZHUANG Zhanxing, LU Fusui, GUO Wenting, et al. Interface adsorption and processing of pesticide suspension concentrate[J]. Shandong Chemical Industry, 2018, 47(12): 60–62. doi: 10.3969/j.issn.1008-021X.2018.12.024
|
[26] |
刘明. 几种典型水溶液分散体系的Zeta电位及其稳定性研究[D]. 武汉:武汉理工大学,2010.
LIU Ming. Study on the Zeta potential and stability of several typical dispersion systems[D]. Wuhan: Wuhan University of Technology, 2010.
|
[27] |
张炜. α-Al2O3悬浮液体系稳定性及其失稳絮凝体破碎基础研究[D]. 北京:北京科技大学,2021.
ZHANG Wei. A fundamental study on the stability of α-Al2O3 suspension system and fragmentation of destabilized flocs[D]. Beijing: University of Science and Technology Beijing, 2021.
|
[28] |
卢祥国,高振环,闫文华. 人造岩心渗透率影响因素试验研究[J]. 大庆石油地质与开发,1994,13(4):53–55.
LU Xiangguo, GAO Zhenhuan, YAN Wenhua. Experimental study of factors influencing permeability of artificial core[J]. Petroleum Geology & Oilfield Development in Daqing, 1994, 13(4): 53–55.
|
1. |
孙巧雷,刘语维,夏乐,冯定,王鹏,张红. 波流载荷作用下的下入安装立管横向动态特性. 石油机械. 2023(06): 50-56+65 .
![]() | |
2. |
焦金刚,谢仁军,吴怡. 深水水下井口下沉时送入管柱纵向振动分析. 石油机械. 2021(12): 62-69 .
![]() | |
3. |
高德利,王宴滨. 海洋深水钻井力学与控制技术若干研究进展. 石油学报. 2019(S2): 102-115 .
![]() | |
4. |
管志川,李敬皎,韩超,张波,赵效锋,腾学清,孙宝江. 深水钻井送入管柱的载荷计算与强度分析. 中国石油大学学报(自然科学版). 2018(02): 71-78 .
![]() | |
5. |
刘康,朱敬宇,张慎颜,陈国明,张伟国. 深水送入管柱导向系统力学性能及影响因素分析. 中国海上油气. 2018(03): 137-143 .
![]() | |
6. |
阚长宾,杨进,周建良,刘书杰,张思敏,胡南丁,殷启帅. 深水低压井口下入工具结构设计与承载特性分析. 石油科学通报. 2017(02): 279-287 .
![]() | |
7. |
柯珂,张辉,周宇阳,王磊,冯士伦. 深水钻井喷射下导管模拟试验装置的研制. 石油钻探技术. 2015(02): 33-37 .
![]() | |
8. |
陈江烨,王一良,侯庆春,杨松. 油井声控压差平衡式开关控制器的研制与试验. 石油钻探技术. 2015(04): 133-137 .
![]() |