Liu Zhihong, Ju Binshan, Huang Yingsong, Wu Dan, Jia Junshan, Liu Haicheng. Experimental Study on Microscopic Water-Flooding to EOR of Remaining Oil through Changing Flow Direction[J]. Petroleum Drilling Techniques, 2015, 43(2): 90-96. DOI: 10.11911/syztjs.201202016
Citation: Liu Zhihong, Ju Binshan, Huang Yingsong, Wu Dan, Jia Junshan, Liu Haicheng. Experimental Study on Microscopic Water-Flooding to EOR of Remaining Oil through Changing Flow Direction[J]. Petroleum Drilling Techniques, 2015, 43(2): 90-96. DOI: 10.11911/syztjs.201202016

Experimental Study on Microscopic Water-Flooding to EOR of Remaining Oil through Changing Flow Direction

More Information
  • Received Date: August 24, 2014
  • Revised Date: December 08, 2014
  • To understand the type of remaining oil and the efficiency of enhanced oil recovery (EOR) in super-high water-cut oil reservoirs, experiments were conducted on the characteristic of oil displacement by water in micro-model. Based on analytical methods of geometric characterization of remaining oil and pore throats, remaining oil was classified. Moreover, flow direction effects on microscopic remaining oil were identified by using visible waterflooding test in micro-model, image recognition, statistical calculation technology, and other methods. Results showed that final oil saturation is 20.90% when flow direction remain unchanged. Nevertheless, it drops to 9.69% in continuous waterflooding if flow direction is changed, which could be raised by 11.2 percent of oil recovery. The research indicated that, the saturation of contiguous and branched remaining oil declines in exponential function, while the saturation of droplet, columnar or oil film remaining oil increases then declines in quadratic polynomial function with water injection after flow direction change. The research provides a theoretical basis for improving the recovery of remaining oil through waterflooding.
  • [1]
    俞启泰.关于剩余油研究的探讨[J].石油勘探与开发,1997,24(2):46-50. Yu Qitai.A study on remaining oil[J].Petroleum Exploration and Development,1997,24(2):46-50.
    [2]
    Jamaloei B Y.The influence of pore wettability on the microstructure of residual oil in surfactant-enhanced water flooding in heavy oil reservoirs:implications for pore-scale flow characterization[J].Journal of Petroleum Science and Engineering,2010(77):121-134.
    [3]
    潘少伟, 梁鸿军,李良,等.微观剩余油仿真研究进展[J].岩性油气藏,2013,25(1):26-20. Pan Shaowei, Liang Hongjun, Li Liang,et al.Research progress on simulation of microscopic remaining oil[J].Lithologic Reservoirs,2013,25(1):26-20.
    [4]
    陈霆,孙志刚.不同化学驱油体系微观驱油机理评价方法[J].石油钻探技术,2013,41(2):87-92. Chen Ting,Sun Zhigang.Microscopic flooding mechanism of different chemical displacement systems[J].Petroleum Drilling Techniques,2013,41(2):87-92.
    [5]
    吴小斌,银燕,孙卫.鄂尔多斯盆地三角洲前缘不同沉积微相砂岩储层水驱油效率及其影响因素:以姬塬地区延长组砂岩储层微观组合模型水驱油试验为例[J].油气地球物理,2008,6(1):41-45. Wu Xiaobin,Yin Yan,Sun Wei.Research on water displacing oil experiment efficiency and influential factors of delta front different sedimentary mic-facies of Ordos Basin:a case history of sandstone reservoir mic-single split mould water displacing oil experiment of Yanchang Formation of Jiyuan Area[J].Petroleum Geophysics,2008,6(1):41-45.
    [6]
    刘太勋,徐怀民.扇三角洲储层微观剩余油分布模拟试验[J].中国石油大学学报:自然科学版,2011,35(4):20-26. Liu Taixun,Xu Huaimin.Micro-remaining oil distribution simulation test of fan delta reservoir[J].Journal of China University of Petroleum:Edition of Natural Science,2011,35(4):20-26.
    [7]
    高辉,孙卫,路勇,等.特低渗透砂岩储层油水微观渗流通道与驱替特征实验研究:以鄂尔多斯盆地延长组为例[J].油气地质与采收率,2011,18(1):58-62. Gao Hui,Sun Wei,Lu Yong,et al.Experimental study on micro-flow channel and displacement characteristic of ultra-low permeability sandstone reservoir:taking Yanchang Formation,Ordos Basin as example[J].Petroleum Geology and Recovery Efficiency,2011,18(1):58-62.
    [8]
    Wang Xiuli,Mohanty K K.Pore-network model of flow in gas/condensate reservoirs[J].SPE Journal,2000,5(4):426-434.
    [9]
    Sohrabi M,Tehrani D H,Danesh A,et al.Visualization of oil recovery by water alternating gas (WAG) injection using high pressure micromodel-oil wet and mixed-wet systems[R].SPE 71494,2001.
    [10]
    Dijke M I J,Sorbie K S,Sohrabi M,et al.Three-phase flow in WAG processes in mixed-wet porous media:pore-scale network simulations and comparison with micromodel experiments[R].SPE 75192,2002.
    [11]
    Pei Haihua,Zhang Guicai,Ge Jijiang,et al.Analysis of microscopic displacement mechanisms of alkaline flooding for enhanced heavy-oil recovery[J].Energy Fuels,2011,25 (10):4423-4429.
    [12]
    Pei Haihua,Zhang Guicai,Ge Jijiang,et al.Comparative effectiveness of alkaline flooding and alkaline-surfactant flooding for improved heavy-oil recovery [J].Energy Fuels,2012,26 (5):2911-2919.
    [13]
    Lu Teng,Li Zhaomin,Li Songyan,et al.Performances of different recovery methods for orinoco belt heavy oil after solution gas drive[J].Energy Fuels,2013,27(6):3499-3507.
    [14]
    张东,李爱芬,姚军,等.洞-缝-洞介质中水驱油注采规律研究[J].石油钻探技术,2012,40(4):86-91. Zhang Dong,Li Aifen,Yao Jun,et al.Law of water flooding in vug-fracture-vug medium[J].Petroleum Drilling Techniques,2012,40(4):86-91.
    [15]
    陈莹莹,孙雷,田同辉,等.裂缝性碳酸盐岩油藏可视化模型水驱油实验[J].断块油气田,2012,19(1):92-94. Chen Yingying,Sun Lei,Tian Tonghui,et al.Experiment on water-oil displacing for visible model of fractured carbonate reservoir[J].Fault-Block Oil Gas Field,2012,19(1):92-94.
    [16]
    刘同敬,姜宝益,刘睿,等.多孔介质中示踪剂微观可视化实验研究[J].断块油气田,2013,20(4):530-534. Liu Tongjing,Jiang Baoyi,Liu Rui,et al.Experimental study on microcosmic visualization of tracer in porous medium[J].Fault-Block Oil Gas Field,2013,20(4):530-534.
    [17]
    张明安.二元复合体系微观驱油机理可视化实验[J].油气地质与采收率,2013,20(3):79-82. Zhang Ming’an.Experiments on visualization of the microscopic mechanism of surfactant/polymer binary compound system[J].Petroleum Geology and Recovery Efficiency,2013,20(3):79-82.
  • Related Articles

    [1]ZHANG Yan, FENG Haishun, ZHAI Yong, ZHOU Xiaomei, LIU Dongqing, WANG Kun. Mechanism and Law of CO2 Pressure Flooding in Enhancing Oil Recovery in Low-Permeability Heavy Oil Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(6): 97-106. DOI: 10.11911/syztjs.2024070
    [2]YUAN Dengyu. Experimental Study of CO2 Huff and Puff Combined with N2 Foam for Enhanced Oil Recovery by Three-Dimensional Physical Models[J]. Petroleum Drilling Techniques, 2022, 50(6): 126-132. DOI: 10.11911/syztjs.2022105
    [3]LYU Wei, LIU Xiaochun, BAI Hailong, PENG Minglan. Laboratory Test Study of CO2 Responsive Enhanced Foam System[J]. Petroleum Drilling Techniques, 2021, 49(5): 88-93. DOI: 10.11911/syztjs.2021119
    [4]JIA Zhiwei, CHENG Changkun, ZHU Xiuyu, PU Lantian, HAN Yu, HU Futang. Oil Recovery Enhancement by Composite Flooding Technology for Gasi N1–N21 Ultra-High-Salinity Reservoir in Qinghai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 81-87. DOI: 10.11911/syztjs.2021121
    [5]MOU Hansheng, LU Wenming, CAO Changxiao, SONG Zhaojie, SHI Juntai, ZHANG Hong. Study on Enhanced Oil Recovery Method in Deep-Water Turbidite Reservoirs—A Case Study of X Reservoir in Angola[J]. Petroleum Drilling Techniques, 2021, 49(2): 79-89. DOI: 10.11911/syztjs.2021025
    [6]TAO Guanghui, SHU Huadong, LIU Bin. Ultra-High Molecular Weight Polymer Flooding Technology for Heavy Oil Reservoirs in Block B125 of the Gucheng Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 66-71. DOI: 10.11911/syztjs.2019127
    [7]ZHANG Li, YUE Xiang’an, WANG Youqi. Research on Large Scale Heterogeneous Model Based EOR Methods for Ultra-High Water Cut Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(5): 83-89. DOI: 10.11911/syztjs.2018078
    [8]WANG Youqi. “Four Points and Five Types” Remaining Oil Classification in Oilfields with Ultra-High Water Cut[J]. Petroleum Drilling Techniques, 2017, 45(2): 76-80. DOI: 10.11911/syztjs.201702012
    [9]Zheng Ailing, Wang Xinhai, Liu Dehua. Method to Tap Remaining Oil in Complex Fault-Block Reservoirs at High Water Cut Stage[J]. Petroleum Drilling Techniques, 2013, 41(2): 99-103. DOI: 10.3969/j.issn.1001-0890.2013.02.019
    [10]Wu Jia, Pu Wanfen, Dong Zhongjun, Jia Hu, Li Junzhong, Du Yang. Advances of the New Deep Oil Displacement and Profile Control Agent Micro-Gel[J]. Petroleum Drilling Techniques, 2012, 40(3): 107-111. DOI: 10.3969/j.issn.1001-0890.2012.03.022
  • Cited by

    Periodical cited type(19)

    1. 罗波波,燕高飞,谢敏,郭立强,蒲保彪,陈道远,齐桂雪,杨祖贵,张昀徽. 东濮老区高含水油藏高通量水洗微观剩余油赋存机理. 断块油气田. 2025(01): 147-152 .
    2. 刘仁静,陆文明. 断块油藏注采耦合提高采收率机理及矿场实践. 岩性油气藏. 2024(03): 180-188 .
    3. 李彦阅,黎慧,吕金龙,夏欢,宋鑫,肖丽华,马文国. 海上油田堵调驱技术驱油机理及剩余油分布研究. 当代化工. 2022(01): 139-143+150 .
    4. 杨磊,张磊,李皓楠,妙爽. 双河特高含水油田大幅限液转流线试验. 石化技术. 2021(09): 81-82 .
    5. 李晓骁,岳湘安,闫荣杰,郭亚兵,檀洪坤. 稠油油藏表面活性剂辅助CO_2驱油效果及主控性能. 油气地质与采收率. 2021(06): 94-100 .
    6. 王瑞. 复杂断块油藏注采耦合技术提高原油采收率的力学机制研究. 中国科技论文. 2020(01): 60-66 .
    7. 倪俊,徐波,王建,王瑞,宋婷,刘甜,高鑫鑫. 油水黏度比对油藏注水开发效果的影响. 科学技术与工程. 2020(17): 6848-6856 .
    8. 朱维耀,马启鹏,李兵兵,刘雅静,岳明. 注采角度变化对驱油效率和微观剩余油的影响. 断块油气田. 2019(02): 220-224 .
    9. 孟也,李相方,何敏侠,蒋明洁. 气泡卡断过程中的喉道液领形态与聚并模型. 断块油气田. 2019(05): 632-637 .
    10. 黄迎松. 水驱速度对束缚型和油膜型剩余油动用的影响理论及实验. 大庆石油地质与开发. 2018(02): 56-61 .
    11. 佟颖,贾元元. 基于刻蚀模型的高渗条带控制下剩余油微观赋存特征. 科学技术与工程. 2018(28): 80-86 .
    12. 李金宜,马奎前,朱文森,信召玲,李彦来. 早期注聚油藏残余油类型及影响因素实验. 石油钻采工艺. 2018(04): 515-521 .
    13. 宫红茹,唐顺卿,胡志成. 胡状集油田特高含水油藏剩余油水驱技术. 石油钻探技术. 2018(05): 95-101 . 本站查看
    14. 殷代印,房雨佳. 三元复合驱微观剩余油驱替机理及动用比例研究. 石油化工高等学校学报. 2017(01): 18-22 .
    15. 殷代印,房雨佳,辛勇亮. 低渗透油藏改变驱替方向微观机理研究. 特种油气藏. 2017(03): 59-63 .
    16. 马康,姜汉桥,李俊键,方文超,张振涛,郭亮. 基于核磁共振的复杂断块油藏微观动用均衡程度实验. 断块油气田. 2016(06): 745-748 .
    17. 姜瑞忠,乔欣,滕文超,徐建春,孙召勃,谢丽沙. 储层物性时变对油藏水驱开发的影响. 断块油气田. 2016(06): 768-771 .
    18. 李滢,杨胜来,雷浩. 反五点井网水驱剩余油分布定量研究. 非常规油气. 2016(04): 85-89 .
    19. 刘群. 油田开发过程中剩余油的形成. 石化技术. 2015(09): 111 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (4519) PDF downloads (9582) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return