XIONG Xiaofei, SHENG Jiaping. Experimental Study on Foam-Assisted Gas Huff-and-Puff in the Jimsar Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2022, 50(2): 22-29. DOI: 10.11911/syztjs.2022017
Citation: XIONG Xiaofei, SHENG Jiaping. Experimental Study on Foam-Assisted Gas Huff-and-Puff in the Jimsar Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2022, 50(2): 22-29. DOI: 10.11911/syztjs.2022017

Experimental Study on Foam-Assisted Gas Huff-and-Puff in the Jimsar Shale Oil Reservoir

More Information
  • Received Date: October 15, 2021
  • Revised Date: December 29, 2021
  • Available Online: March 15, 2022
  • Due to the fact that the Jimsar shale oil reservoir has low permeability and massive artificial and natural fractures, and gas channeling easily happens when N2 huff-and-puff is adopted for development, there is a problem of limited sweep range of N2 and low shale oil recovery. For a greater sweep range of N2 and enhanced oil recovery (EOR) in the Jimsar shale oil reservoir, the Jimsar shale samples were used for foam-assisted gas huff-and-puff experiments based on the evaluation of plugging capacity of foam for shale fractures. Besides, the team analyzed the EOR mechanism of foam-assisted gas huff-and-puff, and studied the influence of the huff-and-puff rounds and matrix permeability of fractured shale samples on the oil recovery by foam-assisted gas huff-and-puff. The experimental results showed that foam could seal fractures and effectively inhibit gas channeling, and when the foam volume fraction was 50% and the gas injection rate was 2 mL/min, the breakthrough pressure could reach the maximum value, with the best effect of plugging. Compared with N2 huff-and-puff, the foam-assisted gas huff-and-puff can improve the recovery of crude oil not only from the large and medium pores, but also from micropores. With optimal foam injection parameters, the recovery of fractured samples increase with the rounds of huff-and-puff, but the increasing extent will gradually fall. For fractured samples with high matrix permeability, the recovery of foam-assisted N2 huff-and-puff are also high. The results can provide the guidance for the development of the Jimsar shale oil by foam-assisted gas huff-and-puff.
  • [1]
    贾承造,郑民,张永峰. 非常规油气地质学重要理论问题[J]. 石油学报,2014,35(1):1–10. doi: 10.7623/syxb201401001

    JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Four important theoretical issues of unconventional petroleum geology[J]. Acta Petrolei Sinica, 2014, 35(1): 1–10. doi: 10.7623/syxb201401001
    [2]
    王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10.

    WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
    [3]
    闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69.

    YAN Lin, CHEN Fuli, WANG Zhiping, et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69.
    [4]
    张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13.

    ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13.
    [5]
    WAN Tao, SHENG J J, SOLIMAN M Y. Evaluation of the EOR potential in shale oil reservoirs by cyclic gas injection[R]. SPWLA-2013-MM, 2013.
    [6]
    GAMADI T D, ELLDAKLI F, SHENG J J. Compositional simulation evaluation of EOR potential in shale oil reservoirs by cyclic natural gas injection: Unconventional Resources Technology Conference, Denver, August 28, 2014[C].
    [7]
    BAI Hao, ZHANG Qiliang, LI Zhaomin, et al. Effect of fracture on production characteristics and oil distribution during CO2 huff-n-puff under tight and low-permeability conditions[J]. Fuel, 2019, 246: 117–125. doi: 10.1016/j.fuel.2019.02.107
    [8]
    YU Yang, SHENG J J. A comparative experimental study of IOR potential in fractured shale reservoirs by cyclic water and nitrogen gas injection[J]. Journal of Petroleum Science and Engineering, 2017, 149: 844–850. doi: 10.1016/j.petrol.2016.11.034
    [9]
    SHENG J J. Enhanced oil recovery in shale reservoirs by gas injection[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 252–259. doi: 10.1016/j.jngse.2014.12.002
    [10]
    LI Gang, MORIDIS G J, ZHANG Keni, et al. The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu Area of South China Sea[J]. Journal of Petroleum Science and Engineering, 2011, 77(1): 49–68. doi: 10.1016/j.petrol.2011.02.009
    [11]
    GAMADI T D, SHENG J J, SOLIMAN M Y. An experimental study of cyclic gas injection to improve shale oil recovery[R]. SPE 166334, 2013.
    [12]
    CHEN Cheng, BALHOFF M, MOHANTY K K. Effect of reservoir heterogeneity on primary recovery and CO2 huff ‘n’ puff recovery in shale-oil reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2014, 17(3): 404–413.
    [13]
    YU Yang, SHENG J J. An experimental investigation of the effect of pressure depletion rate on oil recovery from shale cores by cyclic N2 injection[R]. URTEC-2144010-MS, 2015.
    [14]
    LI Lei, SHENG J J. Experimental study of core size effect on CH4 huff-n-puff enhanced oil recovery in liquid-rich shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1392–1402. doi: 10.1016/j.jngse.2016.08.028
    [15]
    王曦. CO2泡沫体系性能评价及驱油实验研究[J]. 油气地质与采收率,2020,27(1):69–74.

    WANG Xi. Performance evaluation and oil displacement experiment study of CO2 foam system[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 69–74.
    [16]
    王健,吴松芸,余恒,等. CO2泡沫改善吸水剖面实验评价研究[J]. 油气藏评价与开发,2018,8(4):22–25. doi: 10.3969/j.issn.2095-1426.2018.04.005

    WANG Jian, WU Songyun, YU Heng, et al. Effect of CO2 foam on water absorption profile improvement[J]. Reservoir Evaluation and Development, 2018, 8(4): 22–25. doi: 10.3969/j.issn.2095-1426.2018.04.005
    [17]
    刘影,刘永建,范英才,等. 蒸汽驱开发后期热空气泡沫复合驱油研究[J]. 特种油气藏,2018,25(4):118–122. doi: 10.3969/j.issn.1006-6535.2018.04.024

    LIU Ying, LIU Yongjian, FAN Yingcai, et al. Study on hot air-foam combination flooding system in the late stage of steam flooding[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 118–122. doi: 10.3969/j.issn.1006-6535.2018.04.024
    [18]
    李士伦,汤勇,侯承希. 注CO2提高采收率技术现状及发展趋势[J]. 油气藏评价与开发,2019,9(3):1–8. doi: 10.3969/j.issn.2095-1426.2019.03.001

    LI Shilun, TANG Yong, HOU Chengxi. Present situation and development trend of CO2 injection enhanced oil recovery technology[J]. Reservoir Evaluation and Development, 2019, 9(3): 1–8. doi: 10.3969/j.issn.2095-1426.2019.03.001
    [19]
    刘双星,彭勃,刘琦,等. 驱油用CO2泡沫体系粒径对其性能影响研究[J]. 油气藏评价与开发,2020,10(3):33–38.

    LIU Shuangxing, PENG Bo, LIU Qi, et al. Study on impact of particle size of CO2 foam system for flooding on its performance[J]. Reservoir Evaluation and Development, 2020, 10(3): 33–38.
    [20]
    邢晓璇. 泡沫驱微观驱油机理及驱油效果[J]. 油气地质与采收率,2020,27(3):106–112.

    XING Xiaoxuan. Microscopic displacement mechanism and oil displacement effect of foam flooding[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3): 106–112.
    [21]
    李松岩,王麟,韩瑞,等. 裂缝性致密油藏超临界CO2泡沫驱规律实验研究[J]. 油气地质与采收率,2020,27(1):29–35.

    LI Songyan, WANG Lin, HAN Rui, et al. Experimental study on supercritical CO2 foam flooding in fractured tight reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 29–35.
    [22]
    CASTEEL J F, DJABBARAH N F. Sweep improvement in CO2 flooding by use of foaming agents[J]. SPE Reservoir Engineering, 1988, 3(4): 1186–1192. doi: 10.2118/14392-PA
    [23]
    LI Songyan, QIAO Chenyu, JI Guowei, et al. Experimental study of profile control with foam stabilized by clay particle and surfactant[J]. Energies, 2019, 12(5): 781. doi: 10.3390/en12050781
    [24]
    FERNØ M A, EIDE Ø, STEINSBØ M, et al. Mobility control during CO2 EOR in fractured carbonates using foam: laboratory evaluation and numerical simulations[J]. Journal of Petroleum Science & Engineering, 2015, 135: 442–451.
    [25]
    刘祖鹏,李兆敏. CO2驱油泡沫防气窜技术实验研究[J]. 西南石油大学学报(自然科学版),2015,37(5):117–122.

    LIU Zupeng, LI Zhaomin. An experimental study on anti-channeling technology with foam in CO2 flooding[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2015, 37(5): 117–122.
    [26]
    吴永彬,张运军,段文标. 致密油油藏空气泡沫调驱机理实验[J]. 现代地质,2014,28(6):1315–1321. doi: 10.3969/j.issn.1000-8527.2014.06.025

    WU Yongbin, ZHANG Yunjun, DUAN Wenbiao. Experimental study on profile-controlling mechanisms of air foam flooding in tight oil reservoirs[J]. Geoscience, 2014, 28(6): 1315–1321. doi: 10.3969/j.issn.1000-8527.2014.06.025
    [27]
    吕伟,刘笑春,白海龙,等. CO2响应性增强泡沫体系室内试验研究[J]. 石油钻探技术,2021,49(5):88–93. doi: 10.11911/syztjs.2021119

    LYU Wei, LIU Xiaochun, BAI Hailong, et al. Laboratory test study of CO2 responsive enhanced foam system[J]. Petroleum Drilling Techniques, 2021, 49(5): 88–93. doi: 10.11911/syztjs.2021119
    [28]
    李晶晶,邓昌联,唐晓东,等. 稠油减氧空气泡沫驱注入参数优化及现场应用[J]. 特种油气藏,2020,27(4):131–135.

    LI Jingjing, DENG Changlian, TANG Xiaodong, et al. Injection parameter optimization of deoxidized air foam flooding for heavy oil reservoir and its field application [J]. Special Oil & Gas Reserviors, 2020, 27(4): 131–135.
    [29]
    华强. 超声波提高特低渗储层水驱波及体积实验研究[J]. 断块油气田,2021,28(1):115–119.

    HUA Qiang. Experimental study on ultrasonic improving water-flooding swept volume of ultra-low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 115–119.
    [30]
    贾瑞轩,孙灵辉,苏致新,等. 二氧化碳吞吐致密油藏的可动用性[J]. 断块油气田,2020,27(4):504–508.

    JIA Ruixuan,SUN Linghui,SU Zhixin,et al. Availability of CO2 huff and puff in tight reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 504–508.
    [31]
    狄勤丰,贾欣昌,罗强,等. 岩心驱替实验中基于LF-NMR的油、水动态定标方法及应用[J]. 石油钻采工艺,2020,42(1):181–188.

    DI Qinfeng, JIA Xinchang, LUO Qiang, et al. Method and application of oil and water dynamic calibration method based on LF-NMR in core displacement experiment[J]. Oil Drilling & Production Technology, 2020, 42(1): 181–188.
    [32]
    张冲, 萧汉敏, 肖朴夫, 等.盐间页岩油二氧化碳–纯水吞吐开发机理实验及开采特征[J/OL].特种油气藏, 2021: 1-9.(2021-12-23)[2021-12-29].http://kns.cnki.net/kcms/detail/21.1357.TE. 20211222.1708.008.htm.

    ZHANG Chong, XIAO Hanmin, XIAO Pufu, et al.Development mechanism experiment and production characteristics of carbon dioxide pure water huff and puff of inter salt shale oil[J/OL]. Special Oil & Gas Reserviors, 2021: 1-8. (2021-12-23) [2021-12-29]. http://kns.cnki.net/kcms/detail/21.1357.TE.20211222.1708.008.htm.
  • Related Articles

    [1]ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, DAI Yongbo, ZHANG Jincheng, XU Mingbiao. Optimal and Fast Drilling Technologies for Stereoscopic Development of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16-21. DOI: 10.11911/syztjs.2022097
    [2]FAN Hongkang, LIU Jinge, ZANG Yanbin, ZHOU Xianhai, AI Jun, SONG Zheng. Drilling Technology for Adjustment Wells of the Jiaoshiba Block in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(3): 48-54. DOI: 10.11911/syztjs.2020122
    [3]LIU Yanqian. Key Drilling Technologies of Infill Wells in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(5): 21-26. DOI: 10.11911/syztjs.2020039
    [4]LIU Huamin, LI Mu, LIU Qiaoping, ZHANG Liyuan. Research and Application of Plunger Gas Lift Technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 102-107. DOI: 10.11911/syztjs.2020022
    [5]LIU Yaowen. Key Technologies of Green Development in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(5): 8-13. DOI: 10.11911/syztjs.2018115
    [6]PAN Jun, LIU Weidong, ZHANG Jincheng. Drilling Technology Progress and Recommendations for the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(4): 9-15. DOI: 10.11911/syztjs.2018119
    [7]SHU Man, ZHAO Mingkun, XU Mingbiao. Plugging while Drilling Technology Using Oil-Based Drilling Fluid in Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2017, 45(3): 21-26. DOI: 10.11911/syztjs.201703004
    [8]YUE Shouqun, WANG Jinjie, SU Qianrong, CHANG Helei, CHEN Lin. The Optimization of Casing Programs for Horizontal Wells in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2017, 45(1): 17-20. DOI: 10.11911/syztjs.201701003
    [9]ZANG Yanbin, ZHANG Jincheng, ZHAO Mingkun, SONG Zheng, LUO Rui. Economic Performance Assessments of Multi-Well Pad Drilling Technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(6): 30-35. DOI: 10.11911/syztjs.201606005
    [10]ZHANG Jincheng, AI Jun, ZANG Yanbin, YANG Haiping, CHEN Xiaofeng. Multi-Well Pad Technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(3): 9-15. DOI: 10.11911/syztjs.201603002
  • Cited by

    Periodical cited type(3)

    1. 于洋. 连续油管泡沫钻塞技术研究与应用. 复杂油气藏. 2022(02): 90-96 .
    2. 柳军,杜智刚,牟少敏,王睦围,张敏,殷腾,俞海,曹大勇. 连续油管分簇射孔管柱通过能力分析模型及影响因素研究. 特种油气藏. 2022(05): 139-148 .
    3. 任鸽. 连续油管作业在深部煤系气井压裂返排砂堵中的应用. 山东煤炭科技. 2021(04): 172-174 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (448) PDF downloads (65) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return