Citation: | LIU Yanqian. Key Drilling Technologies of Infill Wells in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(5): 21-26. DOI: 10.11911/syztjs.2020039 |
[1] |
牛新明. 涪陵页岩气田钻井技术难点及对策[J]. 石油钻探技术, 2014, 42(4): 1–6.
NIU Xinming. Drilling technology challenges and resolutions in Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2014, 42(4): 1–6.
|
[2] |
陈庭根, 管志川.钻井工程理论与技术[M].东营: 中国石油大学出版社, 2005.
CHEN Tinggen, GUAN Zhichuan. Drilling engineering theory and technology[M]. Dongying: China University of Petroleum Press, 2005.
|
[3] |
艾军,张金成,臧艳彬,等. 涪陵页岩气田钻井关键技术[J]. 石油钻探技术, 2014, 42(5): 9–15.
AI Jun, ZHANG Jincheng, ZANG Yanbin, et al. The key drilling technologies in Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2014, 42(5): 9–15.
|
[4] |
刘伟,何龙,胡大梁,等. 川南海相深层页岩气钻井关键技术[J]. 石油钻探技术, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118
LIU Wei, HE Long, HU Daliang, et al. Key technologies for deep marine shale gas drilling in Southern Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118
|
[5] |
郭印同,杨春和,贾长贵,等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报, 2014, 33(1): 52–59.
GUO Yintong, YANG Chunhe, JIA Changgui, et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 52–59.
|
[6] |
刘铁成,唐海,刘鹏超,等. 裂缝性封闭页岩气藏物质平衡方程及储量计算方法[J]. 天然气勘探与开发, 2011, 34(2): 28–30. doi: 10.3969/j.issn.1673-3177.2011.02.008
LIU Tiecheng, TANG Hai, LIU Pengchao, et al. Material balance equation and reserve calculation method of fractured and closed shale-gas reservoir[J]. Natural Gas Exploration and Development, 2011, 34(2): 28–30. doi: 10.3969/j.issn.1673-3177.2011.02.008
|
[7] |
侯绪田,赵向阳,孟英峰,等. 基于真实裂缝试验装置的液液重力置换试验研究[J]. 石油钻探技术, 2018, 46(1): 30–36.
HOU Xutian, ZHAO Xiangyang, MENG Yingfeng, et al. Liquid-liquid gravity displacement test based on experimental apparatus for real fractures[J]. Petroleum Drilling Techniques, 2018, 46(1): 30–36.
|
[8] |
舒刚,孟英峰,李皋,等. 重力置换式漏喷同存机理研究[J]. 石油钻探技术, 2011, 39(1): 6–11. doi: 10.3969/j.issn.1001-0890.2011.01.002
SHU Gang, MENG Yingfeng, LI Gao, et al. Mechanism of mud loss and well kick due to gravity displacement[J]. Petroleum Drilling Techniques, 2011, 39(1): 6–11. doi: 10.3969/j.issn.1001-0890.2011.01.002
|
[9] |
王金刚,张杰,段小康,等. 漏失压力研究现状[J]. 中国西部科技, 2012, 11(10): 29–30,22.
WANG Jingang, ZHANG Jie, DUAN Xiaokang, et al. Present study situation of pressure leakage[J]. Science and Technology of West China, 2012, 11(10): 29–30,22.
|
[10] |
李亚南,于占淼. 涪陵页岩气田二期水平井钻井防碰绕障技术[J]. 石油钻采工艺, 2017, 39(3): 303–306.
LI Yanan, YU Zhanmiao. Collision avoidance and obstacle bypass technology for horizontal wells in the second phase of Fuling Shale Gas Field[J]. Oil Drilling & Production Technology, 2017, 39(3): 303–306.
|
[11] |
刘匡晓,王庆军,兰凯,等. 页岩气田三维水平井大井眼导向钻井技术[J]. 石油钻探技术, 2016, 44(5): 16–21.
LIU Kuangxiao, WANG Qingjun, LAN Kai, et al. Large diameter hole steering drilling technology for three-dimensional horizontal well in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(5): 16–21.
|
[12] |
赵少伟,徐东升,王菲菲,等. 渤海油田丛式井网整体加密钻井防碰技术[J]. 石油钻采工艺, 2018, 40(supplement 1): 112–114.
ZHAO Shaowei, XU Dongsheng, WANG Feifei, et al. Integral infilling and drilling anti-collision technology of cluster well pattern in Bohai Oilfield[J]. Oil Drilling & Production Technology, 2018, 40(supplement 1): 112–114.
|
[13] |
李伟,刘文臣,周贤海,等. 涪陵页岩气田三维水平井轨道优化设计方法探讨[J]. 石油钻探技术, 2018, 46(2): 17–23.
LI Wei, LIU Wenchen, ZHOU Xianhai, et al. 3D horizontal wellbore trajectory optimization design method in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(2): 17–23.
|
[14] |
杨鹏. 井工厂化作业钻井液关键技术[J]. 特种油气藏, 2019, 26(2): 10–15. doi: 10.3969/j.issn.1006-6535.2019.02.002
YANG Peng. Key technology of drilling fluid for well factory-like operation[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 10–15. doi: 10.3969/j.issn.1006-6535.2019.02.002
|
[15] |
朱宝忠. 国内页岩气长水平井JY2-5HF井钻井液技术[J]. 钻井液与完井液, 2018, 35(6): 60–64. doi: 10.3969/j.issn.1001-5620.2018.06.011
ZHU Baozhong. Drilling fluid technology for long horizontal shale gas Well JY2-5HF in China[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 60–64. doi: 10.3969/j.issn.1001-5620.2018.06.011
|
[16] |
梁文利. 深层页岩气油基钻井液承压堵漏技术[J]. 钻井液与完井液, 2018, 35(3): 37–41. doi: 10.3969/j.issn.1001-5620.2018.03.006
LIANG Wenli. Enhancing pressure bearing capacity of formation to control mud losses in deep shale gas drilling with oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 37–41. doi: 10.3969/j.issn.1001-5620.2018.03.006
|
[17] |
方俊伟,朱立鑫,罗发强,等. 钻井液对裂缝性地层气侵的影响模拟研究[J]. 钻井液与完井液, 2019, 36(3): 287–292.
FANG Junwei, ZHU Lixin, LUO Faqiang, et al. Simulation study on the effects of drilling fluid on gas cut from fractured formations[J]. Drilling Fluid & Completion Fluid, 2019, 36(3): 287–292.
|
[18] |
孔祥伟,林元华,邱伊婕. 控压钻井重力置换与溢流气侵判断准则分析[J]. 应用力学学报, 2015, 32(2): 317–322. doi: 10.11776/cjam.32.02.A012
KONG Xiangwei, LIN Yuanhua, QIU Yijie. Research of mechanism for the gas invasion and gravity replacement in drilling operations[J]. Chinese Journal of Applied Mechanics, 2015, 32(2): 317–322. doi: 10.11776/cjam.32.02.A012
|
[19] |
黄国平,何世明,汤明,等. 顺南区块裂缝性储层置换式气侵影响因素研究[J]. 石油钻探技术, 2018, 46(5): 21–25.
HUANG Guoping, HE Shiming, TANG Ming, et al. A Study on the effect of displacement gas cut on fractured reservoirs in Shunnan Block[J]. Petroleum Drilling Techniques, 2018, 46(5): 21–25.
|
[1] | YIN Shuai, ZHAO Junhui, LIU Ping, SHEN Zhicheng. Opening Conditions and Extension Law of Natural and Hydraulic Fractures in Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 98-105. DOI: 10.11911/syztjs.2024022 |
[2] | SHU Honglin, LIU Chen, LI Zhiqiang, DUAN Guifu, LAI Jianlin, JIANG Ming. Numerical Simulation of Complex Fracture Propagation in Shallow Shale Gas Fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77-84. DOI: 10.11911/syztjs.2023095 |
[3] | ZHAO Huan, LI Wei, TANG Pengfei, WANG Xiao, ZHANG Minghui, WANG Jianbo. Study on the Distribution Law of Near-Wellbore in-situ Stress and Casing Load under Fracturing Conditions[J]. Petroleum Drilling Techniques, 2023, 51(5): 106-111. DOI: 10.11911/syztjs.2023092 |
[4] | ZHANG Yiqun, HU Xiao, WU Xiaoya, LI Gensheng, TIAN Shouceng, ZHAO Shuai. Experimental and Numerical Simulation Study of Natural Gas Hydrate Erosion by Swirling Jet[J]. Petroleum Drilling Techniques, 2022, 50(3): 24-33. DOI: 10.11911/syztjs.2022046 |
[5] | WANG Yi. A Method for Accurate Calculation of Pore Pressure in Fractured Formations of Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(3): 29-34. DOI: 10.11911/syztjs.2020056 |
[6] | LI Wei, ZHAO Huan, LI Siqi, Ll Li, SUN Wenfeng. 2D Characterization of Geometric Features and Connectivity of Fracture Networks in Shale Formations[J]. Petroleum Drilling Techniques, 2017, 45(6): 70-76. DOI: 10.11911/syztjs.201706013 |
[7] | YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018 |
[8] | LI Yumei, LYU Wei, SONG Jie, LI Jun, YANG Hongwei, YU Liwei. Numerical Simulation Study on the Complex Network Fractures of Stratified Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(4): 108-113. DOI: 10.11911/syztjs.201604019 |
[9] | PENG Hao, LI Qian, YIN Hu, TANG Zhiqiang. A New Solution Method for the Lietard Natural Fracture Width Prediction Model[J]. Petroleum Drilling Techniques, 2016, 44(3): 72-76. DOI: 10.11911/syztjs.201603013 |
[10] | Liu Yu, Ai Chi. Opening of Natural Fractures under Induced Stress in Multi-Stage Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(1): 20-26. DOI: 10.11911/syztjs.201501004 |