Citation: | LIU Shanyong, YIN Biao, LOU Yishan, et al. Numerical simulation of migration and placement law of proppants in rough fractures [J]. Petroleum Drilling Techniques, 2024, 52(4):104-109. DOI: 10.11911/syztjs.2024057 |
The rough and narrow fracture walls reduce the effective fracture volume of hydraulic fracturing, which greatly affects the migration and placement of proppants in the fractures and the effect of fracturing stimulation. Therefore, the self-correlated Gaussian distribution surface was established by Matlab, and the rough fracture surface was identified and analyzed with fractal theory. The bidirectional coupling of the computational fluid dynamics-discrete element method (CFD-DEM) was employed to build three-dimensional models of fractures with different roughness, and the deposition and migration process and law of different combinations of proppant diameters within the rough fracture channels were investigated. The research findings indicate that as the fractured surface transitions from smooth to rough, proppant plugging becomes more evident. Under the influence of gravity, small-sized proppants (ratio of diameter to fracture width of 0.3) exhibit better migration capabilities but struggled to ensure the near-wellbore supporting effect. The area covered by large-sized proppants (ratio of diameter to fracture width of 0.8) increase by 158.1%, but the proppant is blocked near the fracture end, affecting subsequent proppant migration to distant areas. Therefore, the recommended ratio of diameter to fracture width is 0.4. For the sand addition method with combined particle diameters, it is recommended to inject small-sized sand first and then large-sized sand to ensure the proppant migration distance and efficiency. The research outcomes contribute to a better understanding of the influence of fracture roughness on proppant migration within fractures, providing important guidance for optimizing fracturing design and operation parameters.
[1] |
路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10.
LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1–10.
|
[2] |
程鑫,柴小颖,杨会洁,等. 尖北气田基岩构造裂缝特征及其对储层的影响[J]. 西南石油大学学报(自然科学版),2023,45(6):18–30. doi: 10.11885/j.issn.1674-5086.2021.12.21.02
CHENG Xin, CHAI Xiaoying, YANG Huijie, et al. Structural fracture characteristics of basement rocks in Jianbei Gas Field and its reservoir improvement effect[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(6): 18–30. doi: 10.11885/j.issn.1674-5086.2021.12.21.02
|
[3] |
舒红林,刘臣,李志强,等. 昭通浅层页岩气压裂复杂裂缝扩展数值模拟研究[J]. 石油钻探技术,2023,51(6):77–84.
SHU Honglin, LIU Chen, LI Zhiqiang, et al. Numerical simulation of complex fracture propagation in shallow shale gas fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77–84.
|
[4] |
唐圣来. 基于嵌入式多尺度裂缝模型的地质建模方法及应用[J]. 特种油气藏,2023,30(1):36–40.
TANG Shenglai. Geological modeling method and its application based on embedded multi-scale fracture model[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 36–40.
|
[5] |
潘林华,王海波,贺甲元,等. 水力压裂支撑剂运移与展布模拟研究进展[J]. 天然气工业,2020,40(10):54–65.
PAN Linhua, WANG Haibo, HE Jiayuan, et al. Progress of simulation study on the migration and distribution of proppants in hydraulic fractures[J]. Natural Gas Industry, 2020, 40(10): 54–65.
|
[6] |
耿宇迪,蒋廷学,刘志远,等. 深层缝洞型碳酸盐岩储层水力裂缝扩展机理研究[J]. 石油钻探技术,2023,51(2):81–89.
GENG Yudi, JIANG Tingxue, LIU Zhiyuan, et al. Mechanism of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(2): 81–89.
|
[7] |
宋丽阳,王纪伟,刘长印,等. 低渗砂泥交互油藏压裂多裂缝扩展规律[J]. 断块油气田,2023,30(1):25–30.
SONG Liyang, WANG Jiwei, LIU Changyin, et al. Multi-fractures propagation law of low permeability sand shale interbed oil reservoirs fracturing[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 25–30.
|
[8] |
吴百烈,彭成勇,武广瑷,等. 可压性指数对压裂裂缝扩展规律的影响研究:以南海LF油田为例[J]. 石油钻探技术,2023,51(3):105–112.
WU Bailie, PENG Chengyong, WU Guang'ai, et al. Effect of fracability index on fracture propagation: a case study of LF Oilfield in South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(3): 105–112.
|
[9] |
蒋廷学,卞晓冰,侯磊,等. 粗糙裂缝内支撑剂运移铺置行为试验[J]. 中国石油大学学报(自然科学版),2021,45(6):95–101.
JIANG Tingxue, BIAN Xiaobing, HOU Lei, et al. Experiment on proppant migration and placement behavior in rough fractures[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 95–101.
|
[10] |
陈珂,于志豪,王守毅,等. 断层附近非均匀应力场页岩压裂缝网扩展模拟[J]. 断块油气田,2023,30(2):213–221.
CHEN Ke, YU Zhihao, WANG Shouyi, et al. Shale fracture network propagation simulation in non-uniform stress field near fault[J]. Fault-Block Oil and Gas Field, 2023, 30(2): 213–221.
|
[11] |
吴峙颖,胡亚斐,蒋廷学,等. 孔洞型碳酸盐岩储层压裂裂缝转向扩展特征研究[J]. 石油钻探技术,2022,50(4):90–96. doi: 10.11911/syztjs.2022084
WU Zhiying, HU Yafei, JIANG Tingxue, et al. Study on propagation and diversion characteristics of hydraulic fractures in vuggy carbonate reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(4): 90–96. doi: 10.11911/syztjs.2022084
|
[12] |
WEN Qingzhi, WANG Shuting, DUAN Xiaofei, et al. Experimental investigation of proppant settling in complex hydraulic-natural fracture system in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 70–80. doi: 10.1016/j.jngse.2016.05.010
|
[13] |
RAIMBAY A, BABADAGLI T, KURU E, et al. Quantitative and visual analysis of proppant transport in rough fractures[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1291–1307. doi: 10.1016/j.jngse.2016.06.040
|
[14] |
郭天魁,曲占庆,李明忠,等. 大型复杂裂缝支撑剂运移铺置虚拟仿真装置的开发[J]. 实验室研究与探索,2018,37(10):242–246.
GUO Tiankui, QU Zhanqing, LI Mingzhong, et al. Development of the large-scale virtual simulation experimental device of proppant transportation and placement in complex fractures[J]. Research and Exploration in Laboratory, 2018, 37(10): 242–246.
|
[15] |
INYANG U A, NGUYEN P D, CORTEZ J. Development and field applications of highly conductive proppant-free channel fracturing method[R]. SPE 168996, 2014.
|
[16] |
HUANG Hai, BABADAGLI T, LI H A, et al. Effect of injection parameters on proppant transport in rough vertical fractures: an experimental analysis on visual models[J]. Journal of Petroleum Science and Engineering, 2019, 180: 380–395. doi: 10.1016/j.petrol.2019.05.009
|
[17] |
DONTSOV E V, PEIRCE A P. Proppant transport in hydraulic fracturing: crack tip screen-out in KGD and P3D models[J]. International Journal of Solids and Structures, 2015, 63: 206–218. doi: 10.1016/j.ijsolstr.2015.02.051
|
[18] |
温庆志,段晓飞,战永平,等. 支撑剂在复杂缝网中的沉降运移规律研究[J]. 西安石油大学学报(自然科学版),2016,31(1):79–84.
WEN Qingzhi, DUAN Xiaofei, ZHAN Yongping, et al. Study on settlement and migration law of proppant in complex fracture network[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2016, 31(1): 79–84.
|
[19] |
SHIOZAWA S, MCCLURE M. Simulation of proppant transport with gravitational settling and fracture closure in a three-dimensional hydraulic fracturing simulator[J]. Journal of Petroleum Science and Engineering, 2016, 138: 298–314. doi: 10.1016/j.petrol.2016.01.002
|
[20] |
ZHANG Guodong, GUTIERREZ M, LI Mingzhong. A coupled CFD-DEM approach to model particle-fluid mixture transport between two parallel plates to improve understanding of proppant micromechanics in hydraulic fractures[J]. Powder Technology, 2017, 308: 235–248. doi: 10.1016/j.powtec.2016.11.055
|
[21] |
郭天魁,宫远志,刘晓强,等. 复杂裂缝中支撑剂运移铺置规律数值模拟[J]. 中国石油大学学报(自然科学版),2022,46(3):89–95.
GUO Tiankui, GONG Yuanzhi, LIU Xiaoqiang, et al. Numerical simulation of proppant migration and distribution in complex fractures[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(3): 89–95.
|
[22] |
LU Cong, MA Li, LI Zhili, et al. A novel hydraulic fracturing method based on the coupled CFD-DEM numerical simulation study[J]. Applied Sciences, 2020, 10(9): 3027. doi: 10.3390/app10093027
|
[23] |
ZENG Junsheng, LI Heng, ZHANG Dongxiao. Numerical simulation of proppant transport in hydraulic fracture with the upscaling CFD-DEM method[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 264–277. doi: 10.1016/j.jngse.2016.05.030
|
[24] |
WANG Xiaoyu, YAO Jun, GONG Liang, et al. Numerical simulations of proppant deposition and transport characteristics in hydraulic fractures and fracture networks[J]. Journal of Petroleum Science and Engineering, 2019, 183: 106401. doi: 10.1016/j.petrol.2019.106401
|
[25] |
WEN C Y, YU Y H. Mechanics of fluidization[J]. Chemical Engineering Progress, Symposium Series, 1966, 62(1): 100–111.
|
[26] |
BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287–332. doi: 10.1016/0013-7952(73)90013-6
|
[27] |
谢和平,PARISEAU W G. 岩石节理粗糙系数(JRC)的分形估计[J]. 中国科学(B辑),1994,24(5):524–530.
XIE Heping, PARISEAU W G. Fractal estimation of rock joint roughness coefficient[J]. Science in China(Series B), 1994, 24(5): 524–530.
|
[28] |
ZHANG Bo, PATHEGAMA GAMAGE R, ZHANG Chengpeng, et al. Hydrocarbon recovery: optimized CFD-DEM modeling of proppant transport in rough rock fractures[J]. Fuel, 2022, 311: 122560. doi: 10.1016/j.fuel.2021.122560
|
[29] |
GUO Tiankui, LUO Zhilin, ZHOU Jin, et al. Numerical simulation on proppant migration and placement within the rough and complex fractures[J]. Petroleum Science, 2022, 19(5): 2268–2283. doi: 10.1016/j.petsci.2022.04.010
|
1. |
刘威. 长水平段水平井钻井技术难点及改进措施. 西部探矿工程. 2024(07): 74-77 .
![]() | |
2. |
汪海阁,常龙,卓鲁斌,席传明,欧阳勇. 中国石油陆相页岩油钻井技术现状与发展建议. 新疆石油天然气. 2024(03): 1-14 .
![]() | |
3. |
秦春,刘纯仁,李玉枝,王治国,陈文可. 苏北断块页岩油水平井钻井提速关键技术. 石油钻探技术. 2024(06): 30-36 .
![]() | |
4. |
蔚远江,王红岩,刘德勋,赵群,李晓波,武瑾,夏遵义. 中国陆相页岩油示范区发展现状及建设可行性评价指标体系. 地球科学. 2023(01): 191-205 .
![]() | |
5. |
郭婷婷. 泥页岩易垮塌油藏钻井提速工艺技术研究. 西部探矿工程. 2023(10): 73-75+79 .
![]() | |
6. |
张文平,许争鸣,吕泽昊,赵雯. 深层页岩欠平衡钻井气液固三相瞬态流动传热模型研究. 石油钻探技术. 2023(05): 96-105 .
![]() | |
7. |
李兵. 海拉尔地区钻井提速设计优化. 山东石油化工学院学报. 2023(03): 51-55 .
![]() | |
8. |
田启忠,戴荣东,王继强,李成龙,黄豪彩. 胜利油田页岩油丛式井提速提效钻井技术. 石油钻采工艺. 2023(04): 404-409 .
![]() | |
9. |
潘永强,张坤,于兴东,王洪月,陈赓,李浩东. 松辽盆地致密油水平井提速技术研究与应用. 石油工业技术监督. 2023(12): 33-38 .
![]() | |
10. |
倪维军,杨国昊,翟喜桐,马龙飞. 延安气田富县区域下古生界水平井优快钻井技术. 石油工业技术监督. 2023(12): 44-48 .
![]() | |
11. |
姜文亚,于浩阳,陈长伟,宋舜尧,高莉津,王晓东,刘广华,冯建园. 陆相页岩油规模效益建产探索与实践. 现代工业经济和信息化. 2023(11): 249-252 .
![]() | |
12. |
迟建功. 大庆古龙页岩油水平井钻井技术. 石油钻探技术. 2023(06): 12-17 .
![]() |