ZHANG Wenping, XU Zhengming, LYU Zehao, et al. Research on a transient flow heat transfer model of gas-liquid-solid three-phase flow for unbalanced drilling in deep shale wells [J]. Petroleum Drilling Techniques,2023, 51(5):96-105. DOI: 10.11911/syztjs.2023089
Citation: ZHANG Wenping, XU Zhengming, LYU Zehao, et al. Research on a transient flow heat transfer model of gas-liquid-solid three-phase flow for unbalanced drilling in deep shale wells [J]. Petroleum Drilling Techniques,2023, 51(5):96-105. DOI: 10.11911/syztjs.2023089

Research on a Transient Flow Heat Transfer Model of Gas-Liquid-Solid Three-Phase Flow for Unbalanced Drilling in Deep Shale Wells

More Information
  • Received Date: May 17, 2023
  • Revised Date: August 26, 2023
  • Available Online: August 31, 2023
  • Accurate prediction and effective control of bottom hole pressure (BHP) are crucial for underbalanced drilling of deep shale wells. However, convective heat transfer in cuttings, annulus fluid, and surrounding environment significantly impacts the accuracy of traditional BHP calculation models. Therefore, a transient non-isothermal flow model of gas, liquid, and solids within the wellbore was developed. Based on the continuity equation and momentum conservation equation, fluid velocity, phase volume fractions, and pressure were calculated. Meanwhile, the energy conservation equation for different radial layers was solved to obtain the temperature distribution of the entire wellbore–formation system. The temperature, pressure, and fluid properties in the depth and radial directions were coupled and solved using an iterative method. The calculated results of this model exhibited an error of less than 5.0% compared with the field data from underbalanced drilling operations, demonstrating its accuracy and reliability. With the proposed model, a comparative analysis was conducted to assess the differences in pressure and temperature predictions when the presence of cuttings and convective heat transfer effects were considered or neglected. The study also analyzed the impact of factors such as underbalanced pressure difference, rate of penetration (ROP), and geothermal gradient on wellbore pressure and temperature distribution. The transient flow heat transfer model of gas, liquid, and solid phases for underbalanced drilling in deep shale wells provides theoretical support for the efficient application of managed pressure drilling and underbalanced drilling in deep shale oil and gas reservoirs.

  • [1]
    李涛,杨哲,徐卫强,等. 泸州区块深层页岩气水平井优快钻井技术[J]. 石油钻探技术,2023,51(1):16–21. doi: 10.11911/syztjs.2022036

    LI Tao, YANG Zhe, XU Weiqiang, et al. Optimized and fast drilling technology for deep shale gas horizontal wells in Luzhou Block[J]. Petroleum Drilling Techniques, 2023, 51(1): 16–21. doi: 10.11911/syztjs.2022036
    [2]
    胡云锋,代一钦. 降密度控压欠平衡钻井技术在页岩气井中的应用[J]. 长江大学学报(自科版),2015,12(29):75–78. doi: 10.16772/j.cnki.1673-1409.2015.29.017

    HU Yunfeng, DAI Yiqin. Application of lower density and control of underbalanced formation pressure in shale gas wells[J]. Journal of Yangtze University(Natural Science Edition), 2015, 12(29): 75–78. doi: 10.16772/j.cnki.1673-1409.2015.29.017
    [3]
    胡挺,张志磊,王云华,等. 阳评1井致密性孔隙-裂缝型气藏欠平衡钻完井技术剖析[J]. 新疆石油天然气,2020,16(4):33–36. doi: 10.3969/j.issn.1673-2677.2020.04.008

    HU Ting, ZHANG Zhilei, WANG Yunhua, et al. Analysis of underbalanced drilling and completion technology for tight-pore fractured gas reservoir-Well Yang Ping1[J]. Xinjiang Oil & Gas, 2020, 16(4): 33–36. doi: 10.3969/j.issn.1673-2677.2020.04.008
    [4]
    李玉海,李博,柳长鹏,等. 大庆油田页岩油水平井钻井提速技术[J]. 石油钻探技术,2022,50(5):9–13.

    LI Yuhai, LI Bo, LIU Changpeng, et al. ROP improvement technology for horizontal shale oil wells in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5): 9–13.
    [5]
    姜政华,孙钢,陈士奎,等. 南川页岩气田超长水平段水平井钻井关键技术[J]. 石油钻探技术,2022,50(5):20–26.

    JIANG Zhenghua, SUN Gang, CHEN Shikui, et al. Key drilling technologies for horizontal wells with ultra-long horizontal sections in Nanchuan Shale Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(5): 20–26.
    [6]
    石崇东,王万庆,史配铭,等. 盐池区块深层页岩气水平井钻井关键技术研究[J]. 石油钻探技术,2021,49(6):23–28.

    SHI Chongdong, WANG Wanqing, SHI Peiming, et al. Research on key drilling technology for horizontal wells in the deep shale gas reservoirs in Yanchi Block[J]. Petroleum Drilling Techniques, 2021, 49(6): 23–28.
    [7]
    车卫勤,许雅潇,岳小同,等. 渝西大足区块超深超长页岩气水平井钻井技术[J]. 石油钻采工艺,2022,44(4):408–414.

    CHE Weiqin, XU Yaxiao, YUE Xiaotong, et al. Drilling technology of ultra-deep ultra-long shale gas horizontal wells in Dazu, West Chongqing[J]. Oil Drilling & Production Technology, 2022, 44(4): 408–414.
    [8]
    谭宾. 四川盆地南部地区深层页岩气工程关键技术与展望[J]. 天然气工业,2022,42(8):212–219. doi: 10.3787/j.issn.1000-0976.2022.08.017

    TAN Bin. Key technologies and prospects of deep shale gas engineering in the southern Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 212–219. doi: 10.3787/j.issn.1000-0976.2022.08.017
    [9]
    FALAVAND-JOZAEI A,HAJIDAVALLOO E,SHEKARI Y,等. 基于非等温三相流模型的欠平衡钻井井底压力预测[J]. 石油勘探与开发,2022,49(2):358–365. doi: 10.11698/PED.2022.02.14

    FALAVAND-JOZAEI A, HAJIDAVALLOO E, SHEKARI Y, et al. Modeling and simulation of non-isothermal three-phase flow for accurate prediction in underbalanced drilling[J]. Petroleum Exploration and Development, 2022, 49(2): 358–365. doi: 10.11698/PED.2022.02.14
    [10]
    吴萌,王玺,杨国彬. MPD技术在印尼基岩地层微欠平衡钻井实践[J]. 钻采工艺,2017,40(2):8–10. doi: 10.3969/J.ISSN.1006-768X.2017.02.03

    WU Meng, WANG Xi, YANG Guobin. Practice of MPD technology in micro-underbalanced drilling in bed rock in Indonesia[J]. Drilling & Production Technology, 2017, 40(2): 8–10. doi: 10.3969/J.ISSN.1006-768X.2017.02.03
    [11]
    胡清富,谢春来,田玉栋,等. 伊拉克库尔德A油田原油注氮欠平衡钻井技术[J]. 石油钻探技术,2021,49(2):32–36.

    HU Qingfu, XIE Chunlai, TIAN Yudong, et al. Under-balanced drilling technique using nitrogen injection into crude oil in Oilfield A of Iraq Kurdistan[J]. Petroleum Drilling Techniques, 2021, 49(2): 32–36.
    [12]
    高如军,唐国军,李洪玺. 充气欠平衡钻井技术在低压漏失井的应用[J]. 钻采工艺,2017,40(3):16–18. doi: 10.3969/J.ISSN.1006-768X.2017.03.06

    GAO Rujun, TANG Guojun, LI Hongxi. Application of aerated UBD in low-pressure lost-circulation well[J]. Drilling & Production Technology, 2017, 40(3): 16–18. doi: 10.3969/J.ISSN.1006-768X.2017.03.06
    [13]
    李科,贾江鸿,于雷,等. 页岩油钻井漏失机理及防漏堵漏技术[J]. 钻井液与完井液,2022,39(4):446–450. doi: 10.12358/j.issn.1001-5620.2022.04.008

    LI Ke, JIA Jianghong, YU Lei, et al. Mechanisms of lost circulation and technologies for mud loss prevention and control in shale oil drilling[J]. Drilling Fluid & Completion Fluid, 2022, 39(4): 446–450. doi: 10.12358/j.issn.1001-5620.2022.04.008
    [14]
    陈更生,吴建发,刘勇,等. 川南地区百亿立方米页岩气产能建设地质工程一体化关键技术[J]. 天然气工业,2021,41(1):72–82.

    CHEN Gengsheng, WU Jianfa, LIU Yong, et al. Geology-engineering integration key technologies for ten billion cubic meters of shale gas productivity construction in the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 72–82.
    [15]
    谢金波,王安成,罗世祥. 煤层气洞穴充气欠平衡钻井井底压力的研究[J]. 钻采工艺,2015,38(4):31–34. doi: 10.3969/J.ISSN.1006-768X.2015.04.09

    XIE Jinbo, WANG Ancheng, LUO Shixiang. Research on bottom hole pressure of cave aerated underbalanced drilling in coalbed gas reservoir[J]. Drilling & Production Technology, 2015, 38(4): 31–34. doi: 10.3969/J.ISSN.1006-768X.2015.04.09
    [16]
    LI Hongtao, LIANG Jie, LI Chengxiao, et al. A novel method to improve mud pulse telemetry performance during gaseated underbalanced drilling[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110400. doi: 10.1016/j.petrol.2022.110400
    [17]
    AL-DARWEESH J, ALJAWAD M S, AL-RAMADAN M, et al. Review of underbalanced drilling techniques highlighting the advancement of foamed drilling fluids[J]. Journal of Petroleum Exploration and Production Technology, 2023, 13(4): 929–958. doi: 10.1007/s13202-022-01596-w
    [18]
    LAGE A C V M, FJELDE K K, TIME R W. Underbalanced drilling dynamics: two-phase flow modeling and experiments[J]. SPE Journal, 2003, 8(1): 61–70. doi: 10.2118/83607-PA
    [19]
    PEDERSEN T, GODHAVN J M. Linear multivariable control of underbalanced-drilling operations[J]. SPE Drilling & Completion, 2017, 32(4): 301–311.
    [20]
    OZBAYOGLU E M. Optimization of liquid and gas flow rates for aerated drilling fluids considering hole cleaning for vertical and low inclination wells[J]. Journal of Canadian Petroleum Technology, 2010, 49(10): 15–24. doi: 10.2118/141517-PA
    [21]
    VEFRING E H, NYGAARD G, LORENTZEN R J, et al. Reservoir characterization during underbalanced drilling (UBD): methodology and active tests[J]. SPE Journal, 2006, 11(2): 181–192. doi: 10.2118/81634-PA
    [22]
    HE Miao, ZHANG Yihang, XU Mingbiao, et al. Real-time interpretation model of reservoir characteristics while underbalanced drilling based on UKF[J]. Geofluids, 2020, 2020: 8967961.
    [23]
    GUO Boyun, HARELAND G, RAJTAR J. Computer simulation predicts unfavorable mud rate and optimum air injection rate for aerated mud drilling[J]. SPE Drilling & Completion, 1996, 11(2): 61–66.
    [24]
    UDEGBUNAM J E, FJELDE K K, EVJE S, et al. On the advection-upstream-splitting-method hybrid scheme: a simple transient-flow model for managed-pressure-drilling and underbalanced-drilling applications[J]. SPE Drilling & Completion, 2015, 30(2): 98–109.
    [25]
    KHEZRIAN M, HAJIDAVALLOO E, SHEKARI Y. Modeling and simulation of under-balanced drilling operation using two-fluid model of two-phase flow[J]. Chemical Engineering Research and Design, 2015, 93: 30–37. doi: 10.1016/j.cherd.2014.05.007
    [26]
    ZHANG Wei, MAO Xinjun, YANG Hong, et al. Innovative application of underbalanced drilling technology for deep drilling in Wuxia Area of Junggar Basin[R]. SPE 156258, 2012.
    [27]
    TENG Xueqing, YANG Pei, LI Ning, et al. The first application of whole process underbalanced drilling in ultradeep horizontal well in Tarim Oilfield[R]. SPE 168954, 2014.
    [28]
    SONG Xuncheng, GUAN Zhichuan. Coupled modeling circulating temperature and pressure of gas–liquid two phase flow in deep water wells[J]. Journal of Petroleum Science and Engineering, 2012, 92/93: 124–131. doi: 10.1016/j.petrol.2012.06.017
    [29]
    ABDELGHANY W K, RADWAN A E, ELKHAWAGA M A, et al. Geomechanical modeling using the depth-of-damage approach to achieve successful underbalanced drilling in the Gulf of Suez rift basin[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108311. doi: 10.1016/j.petrol.2020.108311
    [30]
    SHIRDEL M, SEPEHRNOORI K. Development of transient mechanistic three-phase flow model for wellbores[J]. SPE Journal, 2017, 22(1): 374–388. doi: 10.2118/180928-PA
    [31]
    BROOKS C S, HIBIKI T, ISHII M. Interfacial drag force in one-dimensional two-fluid model[J]. Progress in Nuclear Energy, 2012, 61: 57–68. doi: 10.1016/j.pnucene.2012.07.001
    [32]
    XU Zhengming, SONG Xianzhi, LI Gensheng, et al. Predicting fiber drag coefficient and settling velocity of sphere in fiber containing Newtonian fluids[J]. Journal of Petroleum Science and Engineering, 2017, 159: 409–418. doi: 10.1016/j.petrol.2017.09.046
    [33]
    CHEN N H. An explicit equation for friction factor in pipe[J]. Industrial & Engineering Chemistry Fundamentals, 1979, 18(3): 296–297.
    [34]
    NICKENS H V. A dynamic computer model of a kicking well[J]. SPE Drilling Engineering, 1987, 2(2): 159–173. doi: 10.2118/14183-PA
    [35]
    XU Zhengming, SONG Xianzhi, LI Gensheng, et al. Development of a transient non-isothermal two-phase flow model for gas kick simulation in HTHP deep well drilling[J]. Applied Thermal Engineering, 2018, 141: 1055–1069. doi: 10.1016/j.applthermaleng.2018.06.058
    [36]
    AVELAR C S, RIBEIRO P R, SEPEHRNOORI K. Deepwater gas kick simulation[J]. Journal of Petroleum Science and Engineering, 2009, 67(1/2): 13–22.
    [37]
    YOSHINAGA T, SATO Y. Performance of an air-lift pump for conveying coarse particles[J]. International Journal of Multiphase Flow, 1996, 22(2): 223–238. doi: 10.1016/0301-9322(95)00067-4
  • Cited by

    Periodical cited type(16)

    1. 韩东,周振维,李德伟,于创业,王强,郑成明,张林,黄泽伟,戎深明,易建强. 基于膜脱碳捕集技术的乐东15-1气田CCUS海上工程实践. 中国海上油气. 2025(01): 221-228 .
    2. 康小斌,屈亚宁,马宝鹏. 无机凝胶强化自生泡沫调剖体系性能研究. 日用化学工业(中英文). 2025(04): 481-486 .
    3. 郭少坤,李军,连威,曹伟. CCUS地质封存井筒完整性研究进展及发展建议. 石油钻探技术. 2025(01): 144-154 . 本站查看
    4. 刘祥康,张林,曹思瑞,徐波,李玉飞,曾德智. 枯竭型酸性气藏封存CO_2过程中的油管腐蚀行为及选材. 大庆石油地质与开发. 2024(01): 102-111 .
    5. 王锐,陈亚娟,何悦峰,吴永超,王金帅. 冀中八里西潜山CCUS井筒完整性研究. 石油化工应用. 2024(02): 63-68 .
    6. 刘一唯,王健,张德平,杜德林,钟爽. 用于CCUS油藏压井的环境响应型暂堵剂研制与应用. 断块油气田. 2024(02): 357-362 .
    7. 张来斌,胡瑾秋,肖尚蕊,吴明远. 深部地下空间储能安全与应急保障技术现状与发展趋势. 石油科学通报. 2024(03): 434-448 .
    8. 于晓涛,孙君,吴婷,罗珊,冯佳琦,孙吉星. 烟道气回收CO_2与蒸汽伴注对井下工具腐蚀防护研究. 全面腐蚀控制. 2024(06): 188-191+196 .
    9. 庞敏,张益畅. 我国发展二氧化碳驱油技术的路径思考. 西南石油大学学报(社会科学版). 2024(04): 1-9 .
    10. 魏澈,苏开元,邱银锋,谢小荣,李国香,车久玮. 海上油田群新型电力系统的构建路径与关键技术. 电网技术. 2024(08): 3287-3298 .
    11. 马英文,邢希金,冯桓榰,杨芝乐,王竹. Ni-W镀管在CO_2注入井工况下的适用性研究. 材料保护. 2024(09): 63-70 .
    12. 马先林,刘朕之,湛杰,潘晓甜,李成德. 基于物理信息神经网络的CO_2羽流分布预测方法. 石油钻探技术. 2024(05): 69-75 . 本站查看
    13. 韩东,李德伟,周振维,于创业,许刚强,黄泽伟,易建强,刘鹏飞,高栋梁,陈双. 南海气田膜脱碳CO_2捕集与封存工程及运行优化研究. 天然气与石油. 2024(06): 49-56 .
    14. 谭永胜,庞照宇,李琦,武广瑷,陈博文. 海上老井井筒完整性失效机制及二氧化碳注入可行性研究进展. 环境工程学报. 2024(10): 2754-2763 .
    15. 张矿生,齐银,薛小佳,陶亮,陈文斌,武安安. 鄂尔多斯盆地页岩油水平井CO_2区域增能体积压裂技术. 石油钻探技术. 2023(05): 15-22 . 本站查看
    16. 徐同晖,吴陈芋潼,邢兰昌,贾宁洪,吕伟峰. 井间ERT监测数据远程传输与数据处理平台设计与开发. 计算机测量与控制. 2023(11): 273-279+320 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (244) PDF downloads (57) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return