Citation: | WU Bailie, YANG Kai, CHENG Yuxiong, LIU Shanyong, ZHANG Yan. Experimental Study of Proppant Conductivity in Low Permeability Reservoirs in the South China Sea[J]. Petroleum Drilling Techniques, 2021, 49(6): 86-92. DOI: 10.11911/syztjs.2021064 |
The degree of reserve recovery in low permeability reservoirs in the South China Sea is low, and high-conductivity fractures are difficult to create from hydraulic fracturing. Laboratory studies were conducted to analyze the impact of clay mineral content, combination mode of proppants with different grain sizes, and gel-breaking liquid viscosity on fracture conductivity. Studies showed that the conductivity reduction rate of the 20/40 mesh proppant went up from 13.84% to 31.34% when clay mineral content increased from 15% to 50% under testing conditions.The optimal ratio for ceramsites sized in 20/40 mesh, 30/50 mesh and 40/70 mesh was 3∶1∶1, with a final conductivity of 116.7 D·cm. The maximum proppant conductivity achieved at a gel-breaking liquid viscosity of 1 mPa·s. According to the experimental results, with the increase in clay mineral content, proppant conductivity would decrease. Proppant crushing is mainly caused by compression among proppant particles rather than the interaction of the proppant with the reservoir. A larger proportion of proppant with a larger grain size results in higher conductivity when the proppant is combined with different grain sizes. Permeability decreases from proppant crushing with a small grain size is the main reason for conductivity loss as closure pressure increase. A lower gel-breaking liquid viscosity indicates a higher proppant conductivity. The research outcomes can provide a reference for stimulation candidates selection and fracturing scheme optimization of low permeability reservoirs in the South China Sea.
[1] |
米立军,张向涛,汪旭东,等. 陆丰凹陷古近系构造–沉积差异性及其对油气成藏的控制[J]. 中国海上油气,2018,30(5):1–10.
MI Lijun, ZHANG Xiangtao, WANG Xudong, et al. Tectonic and sedimentary differences of Paleogene and their control on hydrocarbon accumulation in Lufeng sag, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2018, 30(5): 1–10.
|
[2] |
刘军, 刘杰, 曹均, 等. 基于岩石物理实验的储层与孔隙流体敏感参数特征: 以珠江口盆地东部中—深层碎屑岩储层为例[J]. 石油学报, 2019, 40(增刊1): 197–205
LIU Jun, LIU Jie, CAO Jun, et al. Characteristics of reservoir and pore fluid sensitivity parameters based on rock physical experimental: a case study of the middle-deep clastic rock reservoirs in the eastern Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(supplement1): 197–205.
|
[3] |
万琼华,刘伟新,罗伟,等. 珠江口盆地陆丰凹陷A油田储层质量差异及低渗储层主控因素[J]. 石油与天然气地质,2017,38(3):551–560. doi: 10.11743/ogg20170315
WAN Qionghua, LIU Weixin, LUO Wei, et al. Reservoir quality differences and major factors controlling low-permeability reservoirs of Oilfield A in the Lufeng Sag, Pearl River Mouth Basin[J]. Oil & Gas Geology, 2017, 38(3): 551–560. doi: 10.11743/ogg20170315
|
[4] |
于喜艳,苏毅,孙林. 海上低渗储层酸化增效技术及应用[J]. 内蒙古石油化工,2017,43(8):62–66. doi: 10.3969/j.issn.1006-7981.2017.08.025
YU Xiyan, SU Yi, SUN Lin. Applications of acidizing enhancement technology in offshore low-permeability reservoir[J]. Inner Mongolia Petrochemical Industry, 2017, 43(8): 62–66. doi: 10.3969/j.issn.1006-7981.2017.08.025
|
[5] |
范白涛,邓金根,林海,等. 疏松砂岩油藏压裂裂缝延伸规律数值模拟[J]. 石油钻采工艺,2018,40(5):626–632.
FAN Baitao, DENG Jingen, LIN Hai, et al. Numerical simulation of hydraulic fracture propagation characteristics in weakly consolidated sandstone reservoir[J]. Oil Drilling & Production Technology, 2018, 40(5): 626–632.
|
[6] |
谢桂学,李行船,杜宝坛. 压裂防砂技术在胜利油田的研究和应用[J]. 石油勘探与开发,2002,29(3):99–102. doi: 10.3321/j.issn:1000-0747.2002.03.032
XIE Guixue, LI Xingchuan, DU Baotan. The research and application of FracPac technique in Shengli oil field[J]. Petroleum Exploration and Development, 2002,29(3): 99–102. doi: 10.3321/j.issn:1000-0747.2002.03.032
|
[7] |
刘建坤,谢勃勃,吴春方,等. 多尺度体积压裂支撑剂导流能力实验研究及应用[J]. 钻井液与完井液,2019,36(5):646–653. doi: 10.3969/j.issn.1001-5620.2019.05.021
LIU Jiankun, XIE Bobo, WU Chunfang, et al. Experimental study and application for the conductivity of proppant in multi-scale volume fracturing[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 646–653. doi: 10.3969/j.issn.1001-5620.2019.05.021
|
[8] |
郭天魁,张士诚. 影响支撑剂嵌入的因素研究[J]. 断块油气田,2011,18(4):527–529.
GUO Tiankui, ZHANG Shicheng. Study on the factors affecting proppant embedment[J]. Fault-Block Oil & Gas Field, 2011, 18(4): 527–529.
|
[9] |
曲占庆,黄德胜,杨阳,等. 气藏压裂裂缝导流能力影响因素实验研究[J]. 断块油气田,2014,21(3):390–393.
QU Zhanqing, HUANG Desheng, YANG Yang, et al. Experimental research on influence factors of fracture conductivity in gas reservoir[J]. Fault-Block Oil & Gas Field, 2014, 21(3): 390–393.
|
[10] |
KHANNA A, KOTOUSOV A, SOBEY J, et al. Conductivity of narrow fractures filled with a proppant monolayer[J]. Journal of Petroleum Science and Engineering, 2012, 100: 9–13. doi: 10.1016/j.petrol.2012.11.016
|
[11] |
DUENCKEL R, MOORE N, O’CONNEL L, et al. The science of proppant conductivity testing- lessons learned and best practices[R]. SPE 179125, 2016.
|
[12] |
王中学,秦升益,张士诚. 压裂液残渣对不同支撑剂导流能力的影响[J]. 钻采工艺,2017,40(1):56–60. doi: 10.3969/J.ISSN.1006-768X.2017.01.16
WANG Zhongxue, QIN Shengyi, ZHANG Shicheng. Impact of fracture fluid residue on fracture conductivity propped by different proppants[J]. Drilling & Production Technology, 2017, 40(1): 56–60. doi: 10.3969/J.ISSN.1006-768X.2017.01.16
|
[13] |
李超,赵志红,郭建春,等. 致密油储层支撑剂嵌入导流能力伤害实验分析[J]. 油气地质与采收率,2016,23(4):122–126. doi: 10.3969/j.issn.1009-9603.2016.04.020
LI Chao, ZHAO Zhihong, GUO Jianchun, et al. Experimental study on conductivity decline with proppant embedment in tight oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(4): 122–126. doi: 10.3969/j.issn.1009-9603.2016.04.020
|
[14] |
李勇明,刘岩,竭继忠,等. 支撑剂嵌入岩石定量计算模型研究[J]. 西南石油大学学报(自然科学版),2011,33(5):94–97.
LI Yongming, LIU Yan, JIE Jizhong, et al. Research on quantitative calculation model of proppant embedding in rock[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2011, 33(5): 94–97.
|
[15] |
LIU Shanyong, LOU Yishan, WU Han, et al. Optimization of multi-cluster fracturing model under the action of induced stress in horizontal wells[J]. Journal of Engineering Science and Technology Review, 2016, 9(2): 59–65. doi: 10.25103/jestr.092.10
|
[16] |
曹科学,蒋建方,郭亮,等. 石英砂陶粒组合支撑剂导流能力实验研究[J]. 石油钻采工艺,2016,38(5):684–688.
CAO Kexue, JIANG Jianfang, GUO Liang, et al. Experimental study on the flow conductivity of quartz sand-ceramsite proppant[J]. Oil Drilling & Production Technology, 2016, 38(5): 684–688.
|
[17] |
WANG Jie, HUANG Yixiao, ZHANG Yan, et al. Study of fracturing fluid on gel breaking performance and damage to fracture conductivity[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107443. doi: 10.1016/j.petrol.2020.107443
|
[18] |
WILK-ZAJDEL K, KASZA P, MASLOWSKI M. Laboratory testing of fracture conductivity damage by foam-based fracturing fluids in low permeability tight gas formations[J]. Energies, 2021, 14(6): 1–17.
|
1. |
付群超, 万肖箭, 陈沛, 刘挺, 刘宏坤, 李志. 基于机器学习的地层三压力钻前预测方法. 石油钻探技术. 2025(03)
![]() | |
2. |
赵少伟, 杨进, 杨奇奇, 陈绪跃. 渤海油田深层钻探井漏综合治理技术. 石油钻探技术. 2025(03)
![]() | |
3. |
吴怡, 幸雪松, 陈杰, 杨玉贵, 陈立伟, 周长所. 海上深部硬地层裸眼侧钻PDC异形齿冲击破岩机理研究. 石油钻探技术. 2025(03)
![]() | |
4. |
李中, 谢仁军, 殷志明, 罗洪斌, 蔡文军, 田得强. 裂缝性定容封闭体气层气液重力置换规律研究. 石油钻探技术. 2025(03)
![]() | |
5. |
徐鲲, 刘宝生, 李庄威, 李文龙, 靳楠, 付常春. 渤海深部中生界火山岩探井钻井关键技术. 石油钻探技术. 2025(03)
![]() | |
6. |
王晓军, 平善海, 付云博, 李迎, 张建辉, 戴运才. 抗高温防塌水基钻井液体系研发与现场应用. 石油钻探技术. 2025(02)
![]() | |
7. |
杨敏, 鲍典, 焦保雷, 张娟, 罗发强, 罗攀登. 塔里木盆地顺北油气田少井高产地质工程一体化做法与关键技术. 中国石油勘探. 2024(03)
![]() | |
8. |
宋玉良,石张泽,陈华兴. 垦利中深层井下作业储层保护技术研究与实践. 石化技术. 2024(12): 247-249 .
![]() |