Citation: | ZHANG Longsheng, WANG Weiheng. Preparation and field test of double-shell coated proppant(DSCP) [J]. Petroleum Drilling Techniques,2023, 51(1):91-97. DOI: 10.11911/syztjs.2023014 |
The fracturing development of deep shale gas wells requires that proppants should have good compressive strength and flow conductivity. Therefore, phenol-formaldehyde resins, polyol polymers, and curing agents were taken as raw materials to prepare the double-shell coated proppant (DSCP) by a certain mass ratio with the combination of physical surface coating and chemical modification methods. The effort was to find a proppant with high compressive strength, good flow conductivity, and moderate costs. It could be applied to the fracturing of oil and gas wells with high closure pressure. For the prepared DSCP, its inner shell was mainly made of phenol-formaldehyde resins to enhance the compressive strength, and the outer shell was mainly made of inert synthetic resins to further improve the compressive strength and strengthen the flow conductivity. Laboratory experiments were carried out to evaluate the performance of DSCP, such as compressive strength and flow conductivity. The experimental results indicated that the crushing rates of DSCP at 69 and 86 MPa were 1.21% and 2.35% respectively, its flow conductivity was 3.12 mD•cm at 90 ℃ and 90 MPa. In other words, DSCP had good compressive strength and flow conductivity. Field tests showed that compared with the case of horizontal wells fractured with ceramisite, the cost of proppants could be reduced by about 30% on the premise of the same fracturing scale and technical parameters. The research result suggests that DSCP can be applied to the fracturing of wells with high closure pressure and has good prospects of popularization and application.
[1] |
张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13. doi: 10.11911/syztjs.2021072
ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13. doi: 10.11911/syztjs.2021072
|
[2] |
蒋廷学,王海涛. 中国石化页岩油水平井分段压裂技术现状与发展建议[J]. 石油钻探技术,2021,49(4):14–21. doi: 10.11911/syztjs.2021071
JIANG Tingxue, WANG Haitao. The current status and development suggestions for Sinopec’s staged fracturing technologies of horizontal shale oil wells[J]. Petroleum Drilling Techniques, 2021, 49(4): 14–21. doi: 10.11911/syztjs.2021071
|
[3] |
谭晓华,丁磊,胥伟冲,等. 覆膜支撑剂导气阻水效果可视化试验研究[J]. 石油钻探技术,2021,49(3):117–123.
TAN Xiaohua, DING Lei, XU Weichong, et al. Research on visualization experiment of the gas conduction and water blocking effects of coated proppants[J]. Petroleum Drilling Techniques, 2021, 49(3): 117–123.
|
[4] |
吴百烈,杨凯,程宇雄,等. 南海低渗透储层支撑剂导流能力试验研究[J]. 石油钻探技术,2021,49(6):86–92. doi: 10.11911/syztjs.2021064
WU Bailie, YANG Kai, CHENG Yuxiong, et al. Experimental study of proppant conductivity in low permeability reservoirs in the South China Sea[J]. Petroleum Drilling Techniques, 2021, 49(6): 86–92. doi: 10.11911/syztjs.2021064
|
[5] |
梁天成,才博,蒙传幼,等. 水力压裂支撑剂性能对导流能力的影响[J]. 断块油气田,2021,28(3):403–407.
LIANG Tiancheng, CAI Bo, MENG Chuanyou, et al. The effect of proppant performance of hydraulic fracturing on conductivity[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 403–407.
|
[6] |
光新军,王敏生,韩福伟,等. 压裂支撑剂新进展与发展方向[J]. 钻井液与完井液,2019,36(5):529–533. doi: 10.3969/j.issn.1001-5620.2019.05.001
GUANG Xinjun, WANG Minsheng, HAN Fuwei, et al. Proppants for fracturing fluids: new progress made and direction of future development[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 529–533. doi: 10.3969/j.issn.1001-5620.2019.05.001
|
[7] |
董林芳,陈新阳. 自悬浮支撑剂的性能评价与现场应用[J]. 石油钻探技术,2018,46(6):90–94. doi: 10.11911/syztjs.2018144
DONG Linfang, CHEN Xinyang. Performance evaluation and field application of a self-suspending proppant[J]. Petroleum Drilling Techniques, 2018, 46(6): 90–94. doi: 10.11911/syztjs.2018144
|
[8] |
黄博,雷林,汤文佳,等. 自悬浮支撑剂清水携砂压裂增产机理研究[J]. 油气藏评价与开发,2021,11(3):459–464. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.023
HUANG Bo, LEI Lin, TANG Wenjia, et al. Stimulation mechanism of self suspension proppant in sand-carrying fracturing by water[J]. Reservoir Evaluation and Development, 2021, 11(3): 459–464. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.023
|
[9] |
李小刚,廖梓佳,杨兆中,等. 表面改性技术在压裂支撑剂领域的应用[J]. 硅酸盐通报,2018,37(9):2841–2844. doi: 10.16552/j.cnki.issn1001-1625.2018.09.027
LI Xiaogang, LIAO Zijia, YANG Zhaozhong, et al. Research on surface modified fracturing proppants[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2841–2844. doi: 10.16552/j.cnki.issn1001-1625.2018.09.027
|
[10] |
GALCHENKO R, LIU Qing, GAO Yan, et al. Completion and stimulation trends in North American unconventional plays and resulting impact on well productivity[J]. Drilling Engineering, 2021, 48(10): 1–12.
|
[11] |
XU Quan, FAN Fan, LU Zhaohui, et al. Reversible adhesion surface coating proppant[J]. Chinese Chemical Letters, 2021, 32(1): 553–556. doi: 10.1016/j.cclet.2020.02.014
|
[12] |
ZOU Yushi, MA Xinfang, ZHANG Shicheng, et al. The origins of low-fracture conductivity in soft shale formations: an experimental study[J]. Energy Technology, 2015, 3(12): 1233–1242. doi: 10.1002/ente.201500188
|
[13] |
MA Xiaoxia, TIAN Yuming, ZHOU Yi, et al. Sintering temperature dependence of low-cost, low-density ceramic proppant with high breakage resistance[J]. Materials Letters, 2016, 180: 127–129. doi: 10.1016/j.matlet.2016.04.080
|
[14] |
李祥. 一种高强度聚氨酯覆膜支撑剂的制备及性能研究[D]. 重庆: 西南大学, 2018.
LI Xiang. Study on the preparation and properties of a high strength polyurethane coating proppant[D]. Chongqing: Southwest University, 2018.
|
[15] |
徐泉, 田守嶒, 盛茂, 等. 用于非常规储层水力压裂的覆膜支撑剂及制备和应用: CN201910328777.3[P]. 2019-08-23.
XU Quan, TIAN Shouceng, SHENG Mao, et al. Film coated proppant for hydraulic fracturing of unconventional reservoirs and its preparation and application: CN201910328777.3[P]. 2019-08-23.
|
[16] |
夏冰冰. 改性碳纳米管增韧树脂覆膜砂支撑剂的制备与性能研究[D]. 西安: 西安理工大学, 2017.
XIA Bingbing. Preparation and characterization of resin coated sand proppant tougheded by modified carbon nanotubes[D]. Xi’an: Xi’an University of Technology, 2017.
|
[17] |
王萌, 杨贤友, 石阳, 等. 树脂膜包覆的高分子复合材料支撑剂颗粒及其制法与应用: CN201710897128.6[P]. 2019-04-05.
WANG Meng, YANG Xianyou, SHI Yang, et al. Preparation and application of polymer composite proppant particles coated with resin film: CN201710897128.6[P]. 2019-04-05.
|
[18] |
REDDY R B, LIANG Feng. Coated proppants and methods of making and use thereof: US 2021/0171824[P]. 2021-06-10.
|
[19] |
MONASTIRIOTIS S, MCDANIEL R R, MCCRARY A L, et al. Proppant with enhanced interparticle bonding: US 11098242 B2[P]. 2021-08-24.
|
[20] |
VO L K, PRINCE P, PARTON C R. Wet-coated proppant and methods of making and using same: US11015113 B1[P]. 2021-05-25.
|
1. |
魏建平,蔡玉波,刘勇,余大炀,黄逸,李兴,高梦雅. 非刀具破岩理论与技术研究进展与趋势. 煤炭学报. 2024(02): 801-832 .
![]() | |
2. |
白冰,陈勉,金衍. 超临界CO_2渗流的流-固-热多场耦合机理研究. 中国科学:物理学 力学 天文学. 2023(02): 101-113 .
![]() | |
3. |
白冰,陈勉,金衍. 超临界CO_2吸附效应对页岩地层井壁稳定影响研究. 岩石力学与工程学报. 2023(S1): 3508-3518 .
![]() | |
4. |
黄程,霍丽如,吴辰泓. 基于非常规油气开发的CO_2资源化利用技术进展及前景. 非常规油气. 2022(01): 1-9 .
![]() | |
5. |
孙晓,王海柱,李英杰,郑永,陆群. 超临界CO_2水平环空携砂试验研究. 石油钻探技术. 2022(03): 17-23 .
![]() | |
6. |
李木坤,王刚,程卫民,浦仕杰,倪红坚,时贤. 超临界二氧化碳射流破岩的热流固耦合机理. 石油勘探与开发. 2021(06): 1258-1268 .
![]() | |
7. |
乔兰,郝家旺,李占金,邓乃夫,李庆文. 基于微波加热技术的硬岩破裂方法探究. 煤炭学报. 2021(S1): 241-252 .
![]() | |
8. |
LI Mukun,WANG Gang,CHENG Weimin,PU Shijie,NI Hongjian,SHI Xian. Heat-fluid-solid coupling mechanism of supercritical carbon dioxide jet in rock-breaking. Petroleum Exploration and Development. 2021(06): 1450-1461 .
![]() |
|
9. |
杨晓峰,黄彦如,庞勇. 超临界二氧化碳射流火星采样技术研究. 航天器工程. 2020(02): 102-108 .
![]() | |
10. |
白鑫,张东明,王艳,王登科,蒋志刚,王小兵. 液态CO_2相变射流压力变化及其煤岩致裂规律. 中国矿业大学学报. 2020(04): 661-670 .
![]() | |
11. |
熊钰,莫军,李佩斯,蒋军,张烈辉. 致密气藏储层干化剂在超临界CO_2中的溶解性及增溶研究. 化学研究与应用. 2019(01): 72-78 .
![]() | |
12. |
罗攀登,李涵宇,翟立军,李春月,吕欣润,牟建业. 塔河油田超临界CO_2压裂井筒与裂缝温度场. 断块油气田. 2019(02): 225-230 .
![]() | |
13. |
王香增,郑永,吴金桥. 超临界CO_2射流特性数值模拟研究. 石油机械. 2019(09): 90-97 .
![]() | |
14. |
王毅博,王熙,柳愿. 超临界二氧化碳在非常规油气藏开采中的应用研究. 化工技术与开发. 2018(11): 29-32 .
![]() |