ZHANG Longsheng, QIN Shengyi, LEI Lin, XIONG Wei, HUANG Bo, WANG Zhongxue. Property Evaluation and Field Applications of a New Self-Suspending Proppant[J]. Petroleum Drilling Techniques, 2016, 44(3): 105-108. DOI: 10.11911/syztjs.201603019
Citation: ZHANG Longsheng, QIN Shengyi, LEI Lin, XIONG Wei, HUANG Bo, WANG Zhongxue. Property Evaluation and Field Applications of a New Self-Suspending Proppant[J]. Petroleum Drilling Techniques, 2016, 44(3): 105-108. DOI: 10.11911/syztjs.201603019

Property Evaluation and Field Applications of a New Self-Suspending Proppant

More Information
  • Received Date: December 07, 2015
  • Revised Date: January 16, 2016
  • When conventional guar fracturing fluid is used for fracturing, low-permeability reservoirs are significantly damaged by its residues, the flow chart of fluid preparation is complex and the operation intensity is high. In order to solve these problems, a self-suspending proppant was prepared with coated quartz sand as the core and swelling resin as the suspending material. Later, its properties were evaluated and riverfrac tests were carried out on it. Laboratory property evaluation results demonstrated that the self-suspending proppant was equivalent to ceramic and coated quartz sand in terms of physical and chemical properties and to coated quartz sand in terms of flow conductivity. Suspension state appeared within 140 s and no stratification occurred at 110℃ after it was rested for 120 min. It was stable for 27 min after being shorn for 10 min at the shear rate of 540 s-1, and its viscosity after break was only 4 mPa·s. This self-suspending proppant was applied in 6 wells for riverfrac with success rate of 100%. Obviously, it reached the technical indictors of domestic sand fracturing with conventional gel fracturing fluid. It was shown that the self-suspending proppant could meet the operation requirements of riverfrac. Based on results, guar consumption was reduced, the flow chart of fluid preparation was simplified and reservoir damage was mitigated. Therefore, applying the new approach could result in better economic returns.
  • [1]
    庄照锋,赵贤,李荆,等.HPG压裂液水不溶物和残渣来源分析[J].油田化学,2009,26(2):139-141. ZHUANG Zhaofeng,ZHAO Xian,LI Jing,et al.Analysis on the origin of residue and water insoluble substances for HPG fracturing fluid[J].Oilfield Chemistry,2009,26(2):139-141.
    [2]
    张华丽,周继东,杲春,等.胍胶压裂液伤害性研究[J].科学技术与工程,2013,13(23):6866-6871. ZHANG Huali,ZHOU Jidong,GAO Chun,et al.The damage of guar gum fracturing fluid[J].Science Technology and Engineering,2013,13(23):6866-6871.
    [3]
    BRANNON H D,RRICKARDS A R,STEPHENSON C J.Lightweight methods and compositions for well treating:6364018[P].2002-04-02.
    [4]
    RRICKARDS A R,BRANNON H D,WOOD W D,et al.High strength,ultra-lightweight proppant lends new dimensions to hydraulic fracturing applications[R].SPE 84308,2003.
    [5]
    WOOD W D,BRANNON H D,RICKARDS A R,et al.Ultra-lightweight proppant development yields exciting new opportunities in hydraulic fracturing design[R].SPE 84309,2003.
    [6]
    KINCAID K P,SNIDER P M,HERRING M,et al.Self-suspending proppant[R].SPE 163818,2013.
    [7]
    GOLDSTEIN B,VANZEELAND A.Self-suspending proppant transport technology increases stimulated reservoir volume and reduces proppant pack and formation damage[R].SPE 174867,2015.
    [8]
    GOLDSTEIN B,JOSYULA K,VANZEELAND A,et al.Improve well performance by reducing formation damage[R].SPE 178518,2015.
    [9]
    SY/T 6302-2009压裂支撑剂充填层短期导流能力评价推荐方法[S]. SY/T 6302-2009 Recommended practices for evaluating short term proppant pack conductivity[S].
    [10]
    SY/T 5329-2012碎屑岩油藏注水水质推荐指标及分析方法[S]. SY/T 5329-2012 Water quality standard and practice for analysis of oilfield injecting waters in clastic reservoirs[S].
    [11]
    林景禹,刘洪涛,何成刚,等.河南油田老区薄层压裂技术研究[J].石油地质与工程,2007,21(1):64-65, 68. LIN Jingyu,LIU Hongtao,HE Chenggang,et al.Research on hydraulic fracturing technique of thin layer in old blocks of Henan Oilfield[J].Petroleum Geology and Engineering,2007,21(1):64-65,68.
    [12]
    FISHERM K,WARPINSKI N R.Hydraulic-fracture height growth:real date[R].SPE 145949,2011.
  • Cited by

    Periodical cited type(22)

    1. 胡月,魏文澜,李玉强,樊雪儿,程嘉瑞. 基于数字孪生的天然气井多源数据融合温度场分析. 机电工程技术. 2025(01): 102-107 .
    2. 杨传书,王敏生,李昌盛,张洪宝,吴建军,付宣,袁多. 中国石化钻井工程决策支持系统进展及展望. 钻采工艺. 2025(01): 55-62 .
    3. 秦永和,王鹏,曹江娜,张治发,钱浩东. 人工智能技术在工程作业智能支持系统中的应用. 钻采工艺. 2025(01): 70-77 .
    4. 李辉,陆永钢,刘得军,郝振华. 基于故障相关性的随钻方位电磁波测井仪器可靠性失效建模研究. 地球物理学报. 2025(02): 759-767 .
    5. 光新军,马广军,闫娜,胡越发,李婧. 智慧油气藏数字孪生技术新进展与发展思考. 世界石油工业. 2025(02): 13-22 .
    6. 王芷桁,张镇,陈雁,曾国栋,方钢. 基于数字孪生的压回法压井模拟技术框架体系研究. 中国科技论文. 2025(04): 297-309 .
    7. 林伯韬,朱海涛,金衍,张家豪,韩雪银. 油气钻采数字孪生模型构建方法及应用案例. 石油科学通报. 2024(02): 282-296 .
    8. 光新军,李婧,闫娜,赵汩凡,马广军,张承先,王立双. 基于专利分析的智慧油气藏数字孪生技术发展态势及建议. 石油科技论坛. 2024(02): 83-94 .
    9. 王志远,梁沛智,陈科杉,仉志,张剑波,孙宝江. 深部地层智能压井多解性分析与优化策略. 石油钻探技术. 2024(02): 136-145 . 本站查看
    10. 王贺强,郭海涛,马翠岩,王子毓,陈友军,李斌,梁毅. 智能钻井系统在赵东油田的应用. 世界石油工业. 2024(03): 59-67 .
    11. 韦龙贵,张伟国,罗黎敏,杜威,雷磊,王哲,罗源. 数字化井控技术研究现状及发展趋势. 钻采工艺. 2024(04): 86-93 .
    12. 罗园. 基于数字孪生的油气井井喷失控抢险技术研究. 钻采工艺. 2024(04): 80-85 .
    13. 张菲菲,王茜,王学迎,余义兵,娄文强,彭冯佳. 油气井工程多源多模态数据融合技术与展望. 天然气工业. 2024(09): 152-166 .
    14. 冯定,王健刚,张红,孙巧雷,侯灵霞,苗恩铭. 数字孪生技术在油气钻完井工程中的应用与思考. 石油钻探技术. 2024(05): 26-34 . 本站查看
    15. 王钧泽,李黔,尹虎. 基于数字孪生技术的钻井复杂风险智能预警系统架构. 石油钻探技术. 2024(05): 154-162 . 本站查看
    16. 宋先知,李根生,祝兆鹏,马宝东,张子悦. 钻井数字孪生技术研究现状及发展趋势. 石油钻探技术. 2024(05): 10-19+171 . 本站查看
    17. 景明,王增祥. 数字孪生技术在实物地质资料工作中的应用场景探索. 中国矿业. 2024(S2): 145-148 .
    18. 董昌明,王子韵,谢华荣,徐广珺,韩国庆,周书逸,谢文鸿,沈向宇,韩磊. 人工智能海洋学发展前景. 海洋学研究. 2024(03): 2-27 .
    19. 吴玉林,姜莹,程光华,马佳,钱育蓉. 基于一维卷积神经网络的钻井周期预测. 断块油气田. 2023(03): 495-504 .
    20. 张好林,杨传书,李昌盛,王果,段继男. 钻井数字孪生系统设计与研发实践. 石油钻探技术. 2023(03): 58-65 . 本站查看
    21. 李伟,叶鸥,刘辉,黄天尘. 基于数字孪生技术的大型煤矿远程智能监控研究. 计算机测量与控制. 2023(11): 204-211 .
    22. 赵玲,王子贤,王晓晖,常丽娟,黄美晨,刘芳,田枫. 数字孪生在智慧生活应用中的关键技术及前景分析. 系统仿真技术. 2023(04): 369-382 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (2600) PDF downloads (2533) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return