JI Cheng, ZHAO Bing, LI Jianbin, et al. Research of temperature-responsive subsurface self-generated proppant [J]. Petroleum Drilling Techniques,2022, 50(4):45-51. DOI: 10.11911/syztjs.2022078
Citation: JI Cheng, ZHAO Bing, LI Jianbin, et al. Research of temperature-responsive subsurface self-generated proppant [J]. Petroleum Drilling Techniques,2022, 50(4):45-51. DOI: 10.11911/syztjs.2022078

Research of Temperature-Responsive Subsurface Self-Generated Proppant

More Information
  • Received Date: January 12, 2022
  • Revised Date: June 29, 2022
  • Available Online: November 03, 2022
  • A liquid proppant comprised of a phase-change liquid and a non-phase-change liquid was developed to effectively support the full fracture length and network in ultra-deep reservoirs. The developed proppant is liquid under the ground temperature, while it undergoes phase change under the high temperature in reservoirs and transforms into solid particles after a while to support fractures. In addition, it could maintain high fracture conductivity under high temperature and high closing pressures. The test results revealed that the liquid proppant could transform into solid particles of different sizes under different mixing speeds. Before the phase change, it was a viscous fluid, with low filtration loss and good compatibility. After the phase change, the subsurface self-generated proppant had a good pressure-bearing capacity, and the particle size and phase change time could be controlled. Under the closing pressure of 60 MPa, the combinations of proppants of different particle sizes could have an effective conductivity of 9.21 D·cm. The development of the temperature-responsive subsurface self-generated proppant can provide a new efficient stimulation method for oil and gas development in ultra-deep reservoirs.

  • [1]
    谢军,郭贵安,唐青松,等. 超深古老白云岩岩溶型气藏高效开发关键技术:以四川盆地安岳气田震旦系灯影组气藏为例[J]. 天然气工业,2021,41(6):52–59.

    XIE Jun, GUO Guian, TANG Qingsong, et al. Key technologies for the efficient development of ultra-deep ancient dolomite karst gas reservoirs: a case study of the Sinian Dengying Formation gas reservoir in the Anyue Gas Field of the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(6): 52–59.
    [2]
    李新勇,李春月,申鑫,等. 塔河油田水平井三层暂堵酸压工艺设计[J]. 钻采工艺,2021,44(3):52–55. doi: 10.3969/J.ISSN.1006-768X.2021.03.12

    LI Xinyong, LI Chunyue, SHEN Xin, et al. Research of acid fracturing with multistage temporary plugging technology in Tahe Oilfield horizontal wells[J]. Drilling & Production Technology, 2021, 44(3): 52–55. doi: 10.3969/J.ISSN.1006-768X.2021.03.12
    [3]
    耿宇迪,周林波,王洋,等. 超深碳酸盐岩复合高导流酸压技术[J]. 油气藏评价与开发,2019,9(6):56–60. doi: 10.3969/j.issn.2095-1426.2019.06.010

    GENG Yudi, ZHOU Linbo, WANG Yang, et al. High conductivity acid fracturing technology in ultra-deep carbonate reservoir[J]. Reservoir Evaluation and Development, 2019, 9(6): 56–60. doi: 10.3969/j.issn.2095-1426.2019.06.010
    [4]
    徐国伟,邹国庆,朱绕云. 库车凹陷博孜超深凝析气藏加砂压裂技术[J]. 油气井测试,2020,29(6):50–54.

    XU Guowei, ZOU Guoqing, ZHU Raoyun. Sand fracturing technology for Bozi ultra deep condensate gas reservoir in Kuqa Depression[J]. Well Testing, 2020, 29(6): 50–54.
    [5]
    刘洪涛,刘举,刘会锋,等. 塔里木盆地超深层油气藏试油与储层改造技术进展及发展方向[J]. 天然气工业,2020,40(11):76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009

    LIU Hongtao, LIU Ju, LIU Huifeng, et al. Progress and development direction of production test and reservoir stimulation technologies for ultra-deep oil and gas reservoirs in Tarim Basin[J]. Natural Gas Industry, 2020, 40(11): 76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009
    [6]
    安娜,罗攀登,李永寿,等. 碳酸盐岩储层深度酸压用固体颗粒酸的研制[J]. 石油钻探技术,2020,48(2):93–97. doi: 10.11911/syztjs.2020017

    AN Na, LUO Pandeng, LI Yongshou, et al. Development of solid granular acid for the deep acid-fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 93–97. doi: 10.11911/syztjs.2020017
    [7]
    刘通义,王锰,陈光杰,等. 一种新型温控变黏酸体系的研究[J]. 钻井液与完井液,2019,36(1):109–114. doi: 10.3969/j.issn.1001-5620.2019.01.021

    LIU Tongyi, WANG Meng, CHEN Guangjie, et al. Study on a new temperature-controlled variable viscosity acid[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 109–114. doi: 10.3969/j.issn.1001-5620.2019.01.021
    [8]
    陶磊,李松岩,程时清. 稠油油藏水平井泡沫酸解堵技术[J]. 石油钻探技术,2015,43(6):76–80. doi: 10.11911/syztjs.201506014

    TAO Lei, LI Songyan, CHENG Shiqing. Foamed acid plug-removal technique for horizontal wells in heavy oil reservoirs[J]. Petroleum Drilling Techniques, 2015, 43(6): 76–80. doi: 10.11911/syztjs.201506014
    [9]
    LI L, CAWIEZEL K E. Rheological properties of a new class of viscoelastic surfactant[R]. SPE 121716, 2009.
    [10]
    KALGAONKAR R, BATAWEEL M, ALKHOWAILDI M, et al. A non-damaging gelled acid system based on surface modified nanoparticles[R]. SPE 204716, 2021.
    [11]
    ABDRAZAKOV D, PANGA M K, DAEFFLER C, et al. New single-phase retarded acid system boosts production after acid fracturing in Kazakhstan[R]. SPE 189559, 2018.
    [12]
    李新勇,李骁,赵兵,等. 顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术[J]. 石油钻探技术,2022,50(2):92–98. doi: 10.11911/syztjs.2021068

    LI Xinyong, LI Xiao, ZHAO Bing, et al. Key technologies for large-scale acid fracturing of ultra-deep fault-karst carbonate reservoirs with ultra-high temperature for Well S in Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 92–98. doi: 10.11911/syztjs.2021068
    [13]
    李新勇,李春月,赵兵,等. 顺北油气田主干断裂带深穿透酸化技术[J]. 石油钻探技术,2020,48(2):82–87. doi: 10.11911/syztjs.2020014

    LI Xinyong, LI Chunyue, ZHAO Bing, et al. Acidizing technology for deep penetration in main fault zone of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 82–87. doi: 10.11911/syztjs.2020014
    [14]
    GROMAKOVSKII D, PALANIVEL M, LOPEZ A, et al. Efficient CO2 multistage acid stimulation in deep hot-gas reservoirs[R]. SPE 195097, 2019.
    [15]
    ALJAWDER A, ENGINEER Y, ALHAMMADI B, et al. A study on increasing the number of stages in the acid fracturing stimulation technique in horizontal wells for a tight fractured carbonate reservoir in the Bahrain Field[R]. IPTC 22586, 2022.
    [16]
    龚蔚. 深层裂缝型碳酸盐岩油藏水平井水力喷射酸压技术[J]. 断块油气田,2020,27(6):808–811.

    GONG Wei. Hydrajet acid fracturing technique of horizontal well in deep fractured carbonate reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 808–811.
    [17]
    苗娟,何旭晟,王栋,等. 水平井精细分段深度酸化压裂技术研究与应用[J]. 特种油气藏,2022,29(2):141–148. doi: 10.3969/j.issn.1006-6535.2022.02.021

    MIAO Juan, HE Xusheng, WANG Dong, et al. Study and application of fine segmented deep acid fracturing technology for horizontal wells[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 141–148. doi: 10.3969/j.issn.1006-6535.2022.02.021
    [18]
    贺甲元,程洪,向红,等. 塔河油田碳酸盐岩储层暂堵转向压裂排量优化[J]. 石油钻采工艺,2021,43(2):233–238.

    HE Jiayuan, CHENG Hong, XIANG Hong, et al. Optimizing the displacement of temporary plugging and diversion fracturing of the carbonate reservoirs in Tahe Oilfield[J]. Oil Drilling & Production Technology, 2021, 43(2): 233–238.
    [19]
    AL-ENEZI B, AL-MUFAREJ M, ASHQAR A, et al. First successful openhole lateral multistage acid frac in a complex unconventional carbonate reservoir North Kuwait[R]. SPE 188170, 2017.
    [20]
    张诚成. 液体自支撑压裂技术非混相流体分布规律实验研究[D]. 成都: 西南石油大学, 2019.

    ZHANG Chengcheng. Experimental study on the distribution rule of immiscible fluids in liquid self-propping fracturing technology[D]. Chengdu: Southwest Petroleum University, 2019.
    [21]
    陈一鑫. 一种新型自支撑压裂技术实验研究[D]. 成都: 西南石油大学, 2017.

    CHEN Yixin. Experimental study on a new type of self-propping fracturing technology[D]. Chengdu: Southwest Petroleum Univer-sity, 2017.
    [22]
    罗志锋,张楠林,赵立强,等. 自生固相化学压裂缝内温度分布数值模拟[J]. 油气藏评价与开发,2021,11(1):117–123.

    LUO Zhifeng, ZHANG Nanlin, ZHAO Liqiang, et al. Numerical simulation of temperature field in self-generated solid chemical fracturing[J]. Reservoir Evaluation and Development, 2021, 11(1): 117–123.
    [23]
    张春雨,吴家全,王桂珠,等. 胍胶降阻特性及机理研究[J]. 应用化工,2020,49(1):63–66.

    ZHANG Chunyu, WU Jiaquan, WANG Guizhu, et al. Study on the drag reduction and mechanism of guanidine gum[J]. Applied Chemical Industry, 2020, 49(1): 63–66.
    [24]
    徐小茗,刘保江,程绪邦. 羧甲基淀粉糊料流变性能研究[J]. 印染助剂,2009,26(8):19–21. doi: 10.3969/j.issn.1004-0439.2009.08.005

    XU Xiaoming, LIU Baojiang, CHENG Xubang. Rheological property of carboxyl methyl starch[J]. Textile Auxiliaries, 2009, 26(8): 19–21. doi: 10.3969/j.issn.1004-0439.2009.08.005
    [25]
    张金发,管英柱,陈菊,等. 页岩气压裂技术进展及发展建议[J]. 能源与环保,2021,43(10):102–109.

    ZHANG Jinfa, GUAN Yingzhu, CHEN Ju, et al. Progress and development suggestion of shale gas fracturing technology[J]. China Energy and Environmental Protection, 2021, 43(10): 102–109.
    [26]
    田跃儒,张双双,宋爱莉. 一种耐盐速溶海水基压裂液体系的研发及评价[J]. 江汉大学学报(自然科学版),2021,49(5):65–72.

    TIAN Yueru, ZHANG Shuangshuang, SONG Aili. Development and evaluation of a salt-tolerant instant seawater-based fracturing fluid system[J]. Journal of Jianghan University(Natural Science Edition), 2021, 49(5): 65–72.
    [27]
    魏娟明. 滑溜水–胶液一体化压裂液研究与应用[J]. 石油钻探技术,2022,50(3):112–118. doi: 10.11911/syztjs.2022063

    WEI Juanming. Research and application of slick water and gel-liquid integrated fracturing fluids[J]. Petroleum Drilling Techniques, 2022, 50(3): 112–118. doi: 10.11911/syztjs.2022063
    [28]
    魏俊,刘通义,戴秀兰,等. 超分子聚合物类清洁压裂液用浓缩稠化剂的制备及性能[J]. 精细化工,2020,37(2):385–390.

    WEI Jun, LIU Tongyi, DAI Xiulan, et al. Preparation and performance evaluation of slurry thickener for supramolecular polymer clean fracturing fluid[J]. Fine Chemicals, 2020, 37(2): 385–390.
    [29]
    刘同斌, 唐永帆. 四川油气田压裂酸化液体技术新进展[J]. 石油与天然气化工, 2002(增刊1): 47-53.

    LIU Tongbin, TANG Yongfan. The development of acidizing and fracturing technology of Sichuan oil and gas field[J]. Chemical Engineering of Oil and Gas, 2002(supplement 1): 47-53.

Catalog

    Article Metrics

    Article views (220) PDF downloads (42) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return