KANG Yili, TIAN Guofeng, YOU Lijun, YAN Xiaopeng, XU Chengyuan. Friction & Sliding on Fracture Surfaces: A New Mechanism for Increasing Drilling Fluid Leakage in Deep Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 45-53. DOI: 10.11911/syztjs.2021033
Citation: KANG Yili, TIAN Guofeng, YOU Lijun, YAN Xiaopeng, XU Chengyuan. Friction & Sliding on Fracture Surfaces: A New Mechanism for Increasing Drilling Fluid Leakage in Deep Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 45-53. DOI: 10.11911/syztjs.2021033

Friction & Sliding on Fracture Surfaces: A New Mechanism for Increasing Drilling Fluid Leakage in Deep Fractured Reservoirs

More Information
  • Received Date: February 20, 2021
  • Revised Date: August 14, 2021
  • Available Online: November 14, 2021
  • Because repetitive leakage in greater volume often occurs in deep fractured reservoirs after the failure of initial plugging, fracture plugging simulation before and after the sliding with friction happens on fracture surfaces (referred to as friction & sliding on fracture surfaces) was designed and carried out. Supported by the friction & sliding experiments of rock plates and blocks in drilling fluid environment, rock mechanics parameter test based on micron indentation and the three-dimensional surface scanning, the inducing effect of drilling fluid intrusion on the friction & sliding on fracture surfaces was analyzed, and the influence on drilling fluid leakage in fractured reservoirs brought by friction & sliding on fracture surfaces was explored. Experiments showed that when the drilling fluid invaded natural fractures, both oil-base and water-base drilling fluids could decrease the friction factors of fractured rock surfaces, and the oil-base drilling fluid could brought a stronger effect, which would induce friction & sliding on fracture surfaces to form dislocated fractures, providing channels and space for the aggravation of drilling fluid leakage. Also, friction & sliding on fracture surfaces can increase the permeability of fractures, resulting in a decrease in the plugging capacity of drilling fluid and increasing drilling fluid leakage. Moreover, fracture surfaces were smoother after friction & sliding, which may further intensify the degree of dislocation. With the huge increase in the length and width of fractures, the leakage of drilling fluid was exacerbated. The research results showed that friction & sliding on fracture surfaces was one of the reasons for the exacerbation of drilling fluid leakage in deep fractured reservoirs. Drilling fluid leakage in deep fractured reservoirs could be controlled by increasing the friction factors of natural fracture surfaces and effectively controlling the friction & sliding on fracture surfaces.
  • [1]
    臧艳彬,王瑞和,张锐. 川东北地区钻井漏失及堵漏措施现状分析[J]. 石油钻探技术,2011,39(2):60–64. doi: 10.3969/j.issn.1001-0890.2011.02.011

    ZANG Yanbin, WANG Ruihe, ZHANG Rui. Current situation analysis of circulation lost and measures in Northeast Sichuan Basin[J]. Petroleum Drilling Techniques, 2011, 39(2): 60–64. doi: 10.3969/j.issn.1001-0890.2011.02.011
    [2]
    KANG Yili, YOU Lijun, XU Xinghua, et al. Prevention of formation damage induced by mud lost in deep fractured tight gas reservoir in Western Sichuan Basin[J]. Journal of Canadian Petroleum Technology, 2012, 51(1): 46–51. doi: 10.2118/131323-PA
    [3]
    张杜杰,金军斌,陈瑜,等. 深部裂缝性致密储层随钻堵漏材料补充时机研究[J]. 特种油气藏,2020,27(6):158–164.

    HANG Dujie, JIN Junbin, CHEN Yu, et al. Study on the supplement timing of leakage stoppage materials while drilling for deep fractured tight reservoirs[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 158–164.
    [4]
    王建云,杨晓波,王鹏,等. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术[J]. 石油钻探技术,2020,48(3):8–15.

    WANG Jianyun, YANG Xiaobo, WANG Peng, et al. Technologies for the safe drilling of fractured carbonate gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 8–15.
    [5]
    周志世,张震,张欢庆,等. 长裸眼多层系砂泥岩互层井底断层洞穴裂缝失返井漏桥接堵漏工艺技术[J]. 钻井液与完井液,2020,37(4):456–464.

    ZHOU Zhishi, ZHANG Zhen, ZHANG Huanqing, et al. Controlling mud losses into caves with bridging techniques in ultra-deep long open hole[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 456–464.
    [6]
    李冬梅,柳志翔,李林涛,等. 顺北超深断溶体油气藏完井技术[J]. 石油钻采工艺,2020,42(5):600–605.

    LI Dongmei, LIU Zhixiang, LI Lintao, et al. Well completion technologies for the ultra-deep fault-dissolved oil and gas reservoir in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2020, 42(5): 600–605.
    [7]
    王维斌,马廷虎,邓团. 川东宣汉–开江地区恶性井漏特征及地质因素[J]. 天然气工业,2005,25(2):90–92. doi: 10.3321/j.issn:1000-0976.2005.02.029

    WANG Weibin, MA Tinghu, DENG Tuan. Characteristics and geological factors of vicious lost circulation in Xuanhan-Kaijiang Area of East Sichuan[J]. Natural Gas Industry, 2005, 25(2): 90–92. doi: 10.3321/j.issn:1000-0976.2005.02.029
    [8]
    杨振杰. 国外礁灰岩漏失地层钻井技术[J]. 钻井液与完井液,2004,21(1):45–49. doi: 10.3969/j.issn.1001-5620.2004.01.014

    YANG Zhenjie. Drilling technology for biolithite loss zone abroad[J]. Drilling Fluid & Completion Fluid, 2004, 21(1): 45–49. doi: 10.3969/j.issn.1001-5620.2004.01.014
    [9]
    MAURY V, GUENOT A. Practical advantages of mud cooling systems for drilling[J]. SPE Drilling & Completion, 1995, 10(1): 42-48.
    [10]
    YAN Wei, GE Hongkui, WANG Jianbo, et al. Experimental study of the friction properties and compressive shear failure behaviors of gas shale under the influence of fluids[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 153–161. doi: 10.1016/j.jngse.2016.04.019
    [11]
    邹雨时,张士诚,马新仿. 页岩压裂剪切裂缝形成条件及其导流能力研究[J]. 科学技术与工程,2013,13(18):5152–5157. doi: 10.3969/j.issn.1671-1815.2013.18.013

    ZOU Yushi, ZHANG Shicheng, MA Xinfang. Research on the formation conditions and conductivity of shear fracture for hydraulic fracturing in gas-shale[J]. Science Technology and Engineering, 2013, 13(18): 5152–5157. doi: 10.3969/j.issn.1671-1815.2013.18.013
    [12]
    FREDD C N, MCCONNELL S B, BONEY C L, et al. Experimental study of fracture conductivity for water-fracturing and conventional fracturing applications[J]. SPE Journal, 2001, 6(3): 288–298. doi: 10.2118/74138-PA
    [13]
    YAN Xiaopeng, YOU Lijun, KANG Yili, et al. Impact of drilling fluids on friction coefficient of brittle gas shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 144–152. doi: 10.1016/j.ijrmms.2018.04.026
    [14]
    YOU Lijun, KANG Yili, CHEN Zhangxin, et al. Wellbore instability in shale gas wells drilled by oil-based fluids[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 294–299. doi: 10.1016/j.ijrmms.2014.08.017
    [15]
    康毅力,佘继平,林冲,等. 钻井完井液浸泡弱化页岩脆性机制[J]. 力学学报,2016,48(3):730–738. doi: 10.6052/0459-1879-15-286

    KANG Yili, SHE Jiping, LIN Chong, et al. Brittleness weakening mechanisms of shale soaked by drilling & completion fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 730–738. doi: 10.6052/0459-1879-15-286
    [16]
    康毅力, 游利军, 李大奇, 等. 高温高压钻井液漏失动态评价仪: CN201210023152.4[P]. 2012-02-02.

    KANG Yili, YOU Lijun, LI Daqi, et al. High temperature and high pressure drilling fluid leakage dynamic evaluation instrument: CN201210023152.4[P]. 2012-02-02.
    [17]
    陈平,韩强,马天寿,等. 基于微米压痕实验研究页岩力学特性[J]. 石油勘探与开发,2015,42(5):662–670.

    CHEN Ping, HAN Qiang, MA Tianshou, et al. The mechanical properties of shale based on micro-indentation test[J]. Petroleum Exploration and Development, 2015, 42(5): 662–670.
    [18]
    CHAN A W, HAUSER M, COUZENS-SCHULTZ B A, et al. An alternative interpretation of leakoff and lost circulation pressure measurements[R]. ARMA-2013-302, 2013.
    [19]
    COUZENS-SCHULTZ B A, CHAN A W. Stress determination in active thrust belts: an alternative leak-off pressure interpretation[J]. Journal of Structural Geology, 2010, 32(8): 1061–1069. doi: 10.1016/j.jsg.2010.06.013
    [20]
    黄元敏,马胜利,杨马陵. 不同岩性下水对断层摩擦性状影响的实验研究[J]. 地震,2015,35(4):21–29. doi: 10.3969/j.issn.1000-3274.2015.04.003

    HUANG Yuanmin, MA Shengli, YANG Maling. Experimental study of water effect on frictional characteristics for different lithology[J]. Earthquake, 2015, 35(4): 21–29. doi: 10.3969/j.issn.1000-3274.2015.04.003
    [21]
    韩秀玲,杨贤友,熊春明,等. 超深裂缝性厚层改造效果影响因素分析与高效改造对策[J]. 天然气地球科学,2017,28(8):1280–1286.

    HAN Xiuling, YANG Xianyou, XIONG Chunming, et al. Influencing factors and efficient reservoir stimulation countermeasuresin thick and ultra-deep naturally fractured reservoir[J]. Natural Gas Geoscience, 2017, 28(8): 1280–1286.
    [22]
    陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M]. 合肥: 中国科学技术大学出版社, 2009: 172–182.

    CHEN Yong, HUANG Tingfang, LIU Enru. Rock physics[M]. Hefei: University of Science and Technology of China Press, 2009: 172–182.
    [23]
    ZHANG Huijie, LIU Shuhai, XIAO Huaping. Frictional behavior of sliding shale rock-silica contacts under guar gum aqueous solution lubrication in hydraulic fracturing[J]. Tribology International, 2018, 120: 159–165. doi: 10.1016/j.triboint.2017.12.044
    [24]
    高文龙,姜耀东,湛川. 软弱结构面表面形态与充填度的力学特性研究[J]. 工程地质学报,2010,18(1):127–131. doi: 10.3969/j.issn.1004-9665.2010.01.019

    GAO Wenlong, JIANG Yaodong, ZHAN Chuan. The study of structural-plane based on appearance and backfilling state[J]. Journal of Engineering Geology, 2010, 18(1): 127–131. doi: 10.3969/j.issn.1004-9665.2010.01.019
    [25]
    雷国辉, 陈晶晶. 有效应力决定饱和岩土材料抗剪强度的摩擦学解释[J]. 岩土工程学报, 2011, 33(10): 1517-1525.

    LEI Guohui, CHEN Jingjing. Tribological explanation of effective stress controlling shear strength of saturated geomaterials[J]. Chi-nese Journal of Geotechnical Engineering, 2011, 33(10): 1517-1525.
    [26]
    曾义金,李大奇,杨春和. 裂缝性地层防漏堵漏力学机制研究[J]. 岩石力学与工程学报,2016,35(10):2054–2061.

    ZENG Yijin, LI Daqi, YANG Chunhe. Leakage prevention and control in fractured formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2054–2061.
    [27]
    俞杨烽. 富有机质页岩多尺度结构描述及失稳机理[D]. 成都: 西南石油大学, 2013: 61–80.

    YU Yangfeng. Multi-scale structure description and borehole instability mechanism of organic rich shale[D]. Chengdu: Southwest Petroleum University, 2013: 61–80.
    [28]
    李鹏,刘建,李国和,等. 水化学作用对砂岩抗剪强度特性影响效应研究[J]. 岩土力学,2011,32(2):380–386. doi: 10.3969/j.issn.1000-7598.2011.02.010

    LI Peng, LIU Jian, LI Guohe, et al. Experimental study for shear strength characteristics of sandstone under water-rock interaction effects[J]. Rock and Soil Mechanics, 2011, 32(2): 380–386. doi: 10.3969/j.issn.1000-7598.2011.02.010
    [29]
    WITHERSPOON P A, WANG J S Y, IWAI K, et al. Validity of cubic law for fluid flow in a deformable rock fracture[J]. Water Resources Research, 1980, 16(6): 1016–1024. doi: 10.1029/WR016i006p01016
    [30]
    王剑波. 页岩储层缝面摩擦滑动特性研究[D]. 北京: 中国石油大学(北京), 2016: 61-62.

    WANG Jianbo. Study on frictional sliding characteristics of fracture surface of shale reservoir[D]. Beijing: China University of Petroleum(Beijing), 2016: 61-62.
  • Related Articles

    [1]XIONG Junjie. Gel Breaking Mechanism of Guar Gum Fracturing Fluid by Biological Enzyme and Ammonium Persulfate[J]. Petroleum Drilling Techniques, 2024, 52(6): 126-130. DOI: 10.11911/syztjs.2024071
    [2]LIU Huimin, WANG Minsheng, LI Zhongchao, CHEN Zongqi, AI Kun, WANG Yunhai, MAO Yi, YAN Na. Challenges and Efficient Operation Mechanism of Shale Oil Exploration and Development in China[J]. Petroleum Drilling Techniques, 2024, 52(3): 1-10. DOI: 10.11911/syztjs.2024052
    [3]SONG Xianzhi, YAO Xuezhe, XU Zhengming, ZHOU Mengmeng, WANG Qingchen. Research on the Influence Mechanism of Heat-Insulating Coating Parameters in Temperature-Controlled Drilling of Ultra-Deep Well[J]. Petroleum Drilling Techniques, 2024, 52(2): 126-135. DOI: 10.11911/syztjs.2024048
    [4]SHI Bingzhong, ZHANG Dong, CHU Qi. Micro Digital Analysis on Instability Form and Mechanism of Mudstone Borehole Wall in Songnan Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(1): 22-33. DOI: 10.11911/syztjs.2023005
    [5]LIU Haoya, BAO Hongzhi, LIU Yaqing, HE Qingshui, HU Zhiqiang, JIN Xin. Hardening Properties and Enhancement Mechanisms of Modified Alumina Cement at Minus Temperature[J]. Petroleum Drilling Techniques, 2021, 49(2): 54-60. DOI: 10.11911/syztjs.2020129
    [6]YAO Xiao, GE Zhuang, WANG Xiaojing, ZHOU Shiming, XIE Zhiyi, HE Qingshui. Research Progress of Degradation of Mechanical Properties of Sand-Containing Cement in High Temperature Regimes[J]. Petroleum Drilling Techniques, 2018, 46(1): 17-23. DOI: 10.11911/syztjs.2018008
    [7]CHEN Zhaowei, WANG Pengfei, XIANG Degui. Analysis of Casing Deformation in the Changning-Weiyuan Block Based on Focal Mechanism[J]. Petroleum Drilling Techniques, 2017, 45(4): 110-114. DOI: 10.11911/syztjs.201704019
    [8]Zheng Deshuai, Zhang Huawei, Zhu Ye, Sun Wenjun. Affecting Mechanism of Rock Mechanical Property on Well Trajectory[J]. Petroleum Drilling Techniques, 2014, 42(3): 45-49. DOI: 10.3969/j.issn.1001-0890.2014.03.009
    [9]Yang Henglin, Shen Ruichen, Fu Li. Composition and Mechanical Properties of Gas Shale[J]. Petroleum Drilling Techniques, 2013, 41(5): 31-35. DOI: 10.3969/j.issn.1001-0890.2013.05.006
    [10]Bu Yuhuan, Ma Cong, Bu Wanrong, Gao Yi, Xu Huaxiang. Experimental Study on the Composite Retarder for MPC[J]. Petroleum Drilling Techniques, 2013, 41(1): 14-19. DOI: 10.3969/j.issn.1001-0890.2013.01.003
  • Cited by

    Periodical cited type(5)

    1. 罗玉财,陈新勇,谭天宇,席佳男,郑晨,李岩. 河套盆地XX井井控成功实践与分析. 西部探矿工程. 2024(08): 53-56 .
    2. 陶振宇,樊洪海,刘玉含,叶宇光,邓嵩,罗胜. 基于地层溢流能量的压井方式选择方法. 石油钻采工艺. 2023(04): 424-431 .
    3. 伍贤柱,胡旭光,韩烈祥,罗园,许期聪,庞平,李黔. 井控技术研究进展与展望. 天然气工业. 2022(02): 133-142 .
    4. 张世林. 对井控概念的理解与阐释. 中外能源. 2020(01): 33-37 .
    5. 李轶明,夏威,罗方伟,陈泽恩,梁爽,王鹏. 司钻法自动化压井系统试验研究. 中国安全生产科学技术. 2019(03): 30-36 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (538) PDF downloads (86) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return