CHEN Zhaowei, WANG Pengfei, XIANG Degui. Analysis of Casing Deformation in the Changning-Weiyuan Block Based on Focal Mechanism[J]. Petroleum Drilling Techniques, 2017, 45(4): 110-114. DOI: 10.11911/syztjs.201704019
Citation: CHEN Zhaowei, WANG Pengfei, XIANG Degui. Analysis of Casing Deformation in the Changning-Weiyuan Block Based on Focal Mechanism[J]. Petroleum Drilling Techniques, 2017, 45(4): 110-114. DOI: 10.11911/syztjs.201704019

Analysis of Casing Deformation in the Changning-Weiyuan Block Based on Focal Mechanism

More Information
  • Received Date: January 02, 2017
  • Revised Date: May 03, 2017
  • Casing deformation is a very serious problem in the Changning-Weiyuan Shale Gas Demonstration Area in Sichuan Province,where natural fractures(or faults)create problems,and in fact are the main controlling factor of casing deformation.In order to understand the effect of microseismic magnitude and fractures(or faults)and the scale which induces casing deformation,a study employed the source parameters of the circular fault model,and a mathematical model reflecting the relationships among parameters(e.g.fault radius,slip throw,seismic moment and moment magnitude)was developed.In practical application,the slip throw of fault(i.e.,casing deformation)is estimated by using 24-finger caliper logging data or the maximum diameter of grind shoe through the casing deformation position.Then the model is used to calculate the fracture or fault radius and the microseismic magnitude which can be related to the casing deformation.The calculated microseismic magnitude and fracture or fault radius related to casing deformation in Changning-Weiyuan Block are 2.0-3.5 and 100-400 m,respectively;the results are consistent with the measured data.The results also demonstrated a certain reliability and practicability of this model in the Changning-Weiyuan Block and verified the casing deformation mechanism.The research results can be used as references in wellbore trajectory optimization design,real-time microseismic monitoring during hydraulic fracturing and in the prevention and control of casing deformation.
  • [1]
    田中兰,石林,乔磊.页岩气水平井井筒完整性问题及对策[J].天然气工业,2015,35(9):70-76. TIAN Zhonglan,SHI Lin,QIAO Lei.Research and countermeasure for wellbore integrity of shale gas horizontal well[J].Natural Gas Industry,2015,35(9):70-76.
    [2]
    陈朝伟,石林,项德贵.长宁-威远页岩气示范区套管变形机理及对策[J].天然气工业,2016,36(11):70-75. CHEN Zhaowei,SHI Lin,XIANG Degui.Mechanism of casing deformation in the Changning-Weiyuan national shale gas project demonstration area and countermeasures[J].Natural Gas Industry,2016,36(11):70-75.
    [3]
    KRISTIANSEN T G,BARKVED O,PATTILLO P D.Use of passive seismic monitoring in well and casing design in the compacting and subsiding Valhall Field,North Sea[R].SPE 65134,2000.
    [4]
    MAXWELL S C,JONES M,PARKER R,et al.Fault activation during hydraulic fracturing[R].SEG 2009-1552,2009.
    [5]
    SMITH R J.15 years of passive seismic monitoring at Cold Lake,Alberta[J].Recorder,2010,35(7):7-13.
    [6]
    WARPINSKI N R,DU Jing,ZIMMER U.Measurements of hydraulic-fracture-induced seismicity in gas shales[R].SPE 151597,2012.
    [7]
    MAXWELL S C.Anomalous induced seismic deformation associated with hydraulic fracturing[R].SPE 167181,2013.
    [8]
    WARPINSKI N R.A review of hydraulic-fracture induced microseismicity[R].ARMA-2014-7774,2014.
    [9]
    PIRAYEHGAR A,DUSSEAULT M B.Numerical investigation of seismic events associated with hydraulic fracturing[R].ISRM-13CONGRESS-2015-168,2015.
    [10]
    BAO Xuewei,EATON D W.Fault activation by hydraulic fracturing in Western Canada[J].Science,2016,354(6318):1406-1409.
    [11]
    AKI K,RICHARDS P G.Quantitative seismology[M].2nd ed.California:University Science Books, 2002:146-177.
    [12]
    STEIN S,WYSESSION M.An introduction to seismology,earthquakes,and earth structure[M].Oxford:Blackwell Publishing,2003:263-273.
    [13]
    BOORE D M, BOATWRIGHT J.Average body-wave radiation coefficients[J].Bulletin of the Seismological Society of America,1984,74(5):1615-1621.
    [14]
    HANKS T C,KANAMORI H.A moment magnitude scale[J].Journal of Geophysical Research,1979,84(B5):2348-2350.
    [15]
    KANAMORI H,ANDERSON D L.Theoretical basis of some empirical relations in seismology[J].Bulletin of the Seismological Society of America,1975,65(5):1073-1095.
    [16]
    CIPOLLA C L,MACK M G,MAXWELL S C,et al.A practical guide to interpreting microseismic measurements[R].SPE 144067,2011.
    [17]
    MUKUHIRA Y,ASANUMA H,NⅡTSUMA H,et al.Characteristics of large-magnitude microseismic events recorded during and after stimulation of a geothermal reservoir at Basel,Switzerland[J].Geothermics,2013,45(45):1-17.
    [18]
    赵翠萍,陈章立,华卫,等.中国大陆主要地震活动区中小地震震源参数研究[J].地球物理学报,2011,54(6):1478-1489. ZHAO Cuiping,CHEN Zhangli,HUA Wei,et al.Study on source parameters of small to moderate earthquakes in the main seismic active regions,China mainland[J].Chinese Journal of Geophysics,2011,54(6):1478-1489.
  • Related Articles

    [1]LI Gao, LI Hongzhi, JIAN Xu, WANG Jun, WANG Songtao. Design and Mechanical Property Simulation of a Impact Source Tool for the Advanced Detection of Gas Drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 14-20. DOI: 10.11911/syztjs.2022112
    [2]WANG Zhiyuan, HUANG Weian, FAN Yu, LI Xiaojie, WANG Xudong, HUANG Shengming. Technical Research and Application of Oil Base Drilling Fluid with Strong Plugging Property in Changning Block[J]. Petroleum Drilling Techniques, 2021, 49(5): 31-38. DOI: 10.11911/syztjs.2021039
    [3]CHEN Zhaowei, HUANG Rui, ZENG Bo, SONG Yi, ZHOU Xiaojin. Analysis and Optimization of Construction Parameters for Preventing Casing Deformation in the Changning Shale Gas Block, Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 93-100. DOI: 10.11911/syztjs.2020108
    [4]WANG Jianlong, FENG Guanxiong, LIU Xuesong, GUO Rui, GAO Xuesheng, HUO Yang. Key Technology for Drilling and Completion of Shale Gas Horizontal Wells with Ultra-Long Horizontal Sections in Changning Block[J]. Petroleum Drilling Techniques, 2020, 48(5): 9-14. DOI: 10.11911/syztjs.2020086
    [5]WU Xianzhu. Key Technologies in the Efficient Development of the Weiyuan Shale Gas Reservoir, Sichuan Basin[J]. Petroleum Drilling Techniques, 2019, 47(4): 1-9. DOI: 10.11911/syztjs.2019074
    [6]LIN Yongxue, ZHEN Jianwu. Water Based Drilling Fluid Technology for Deep Shale Gas Horizontal Wells in Block Weiyuan[J]. Petroleum Drilling Techniques, 2019, 47(2): 21-27. DOI: 10.11911/syztjs.2019022
    [7]LI Bin, FU Jianhong, QIN Fubing, TANG Yiyuan. Well Pad Drilling Technology in the Weiyuan Shale Gas Block[J]. Petroleum Drilling Techniques, 2017, 45(5): 13-18. DOI: 10.11911/syztjs.201705003
    [8]FAN Fan, WANG Jingguang, LIN Wenjie. Clay-Free Oil Based Drilling Fluid Technology for Shale Gas Horizontal Wells in the Changning Block[J]. Petroleum Drilling Techniques, 2016, 44(5): 34-39. DOI: 10.11911/syztjs.201605006
    [9]Liu Naizhen. Application of Factory Drilling Technology in Block Su 53[J]. Petroleum Drilling Techniques, 2014, 42(5): 21-25. DOI: 10.11911/syztjs.201405004
    [10]Qu Yingxin, Yan Xiaofeng. Optimization of Injection-Production Parameters in Thin Heavy Oil Reservoirs Development of Du66 Block in Jiangqiao through Hot Water Flooding[J]. Petroleum Drilling Techniques, 2013, 41(6): 90-94. DOI: 10.3969/j.issn.1001-0890.2013.06.018
  • Cited by

    Periodical cited type(37)

    1. 翟文宝,陈朝伟,王倩,冯枭,黄浩勇,谭鹏,杨子轩. 基于地质力学的断裂滑动风险评估方法. 西安石油大学学报(自然科学版). 2025(02): 74-84 .
    2. 赵超杰,靳彦欣,闫柯乐,王子栋. 断层滑移剪切套管变形模拟及安全控制方法. 安全、健康和环境. 2025(03): 27-35 .
    3. 付海峰,刘鹏林,陈祝兴,翁定为,马泽元,李军. 基于避免断层激活机制的组合压裂模式研究. 石油机械. 2024(01): 88-97 .
    4. 刘豪,刘怀亮,刘宇,曹伟,连威,李军. 页岩气多级压裂断层动态滑移规律研究. 石油机械. 2024(02): 65-74 .
    5. 刘怀亮,樊子潇,刘宇,连威,席岩,张小军. 基于震源机制的断层滑移量计算方法. 世界石油工业. 2024(05): 40-47 .
    6. 林魂,宋西翔,杨兵,袁勇,张健强,孙新毅. 温-压耦合作用下断层滑移对套管应力的影响. 石油机械. 2023(06): 136-142+158 .
    7. 孟胡,吕振虎,王晓东,张辉,申颍浩,葛洪魁. 基于压裂参数优化的套管剪切变形控制研究. 断块油气田. 2023(04): 601-608 .
    8. 张伟,李军,张慧,王典,李托,刘怀亮. 断层滑移对套管剪切变形的影响规律及防控措施. 断块油气田. 2023(05): 734-742 .
    9. 文山师,尹陈,石学文,张洞君,韩福盛,熊财富. 天然裂缝主导模式下泸州龙马溪组页岩水力压裂多尺度破裂特征. 地球物理学进展. 2023(05): 2172-2181 .
    10. 赵欢,李玮,唐鹏飞,王晓,张明慧,王剑波. 压裂工况下近井筒地应力及套管载荷分布规律研究. 石油钻探技术. 2023(05): 106-111 . 本站查看
    11. 孟胡,申颍浩,朱万雨,李小军,雷德荣,葛洪魁. 四川盆地昭通页岩气水平井水力压裂套管外载分析. 特种油气藏. 2023(05): 166-174 .
    12. 陈朝伟,周文高,项德贵,谭鹏,宋建,陈晓军,任乐佳,黄浩. 预防页岩气套变的橡胶组合套管研制及其抗剪切性能评价. 天然气工业. 2023(11): 131-136 .
    13. 张旭,张哲平,杨尚谕,王雪刚,宋琳. 基于特征值和弧长法计算套管抗挤强度. 钻采工艺. 2022(01): 35-40 .
    14. 陈朝伟,项德贵. 四川盆地页岩气开发套管变形一体化防控技术. 中国石油勘探. 2022(01): 135-141 .
    15. 吴建忠,乔智国,慈建发,何龙,连威,李军. 基于震源机制的套管变形量控制方法研究. 石油管材与仪器. 2022(03): 24-31 .
    16. 刘鹏林,李军,席岩,连威,张小军,郭雪利. 页岩断层滑移量计算模型及影响因素研究. 石油机械. 2022(08): 74-80 .
    17. 郭雪利,沈吉云,武刚,靳建洲,纪宏飞,徐明,刘慧婷,黄昭. 韧性材料对页岩气压裂井水泥环界面完整性影响. 表面技术. 2022(12): 232-242 .
    18. 陈朝伟,黄锐,曾波,宋毅,周小金. 四川盆地长宁页岩气区块套管变形井施工参数优化分析. 石油钻探技术. 2021(01): 93-100 . 本站查看
    19. 李军,赵超杰,柳贡慧,张辉,张鑫,任凯. 页岩气压裂条件下断层滑移及其影响因素. 中国石油大学学报(自然科学版). 2021(02): 63-70 .
    20. 张平,何昀宾,刘子平,童亨茂,邓才,任晓海,张宏祥,李彦超,屈玲,付强,王向阳. 页岩气水平井套管的剪压变形试验与套变预防实践. 天然气工业. 2021(05): 84-91 .
    21. 李晓蓉,古臣旺,冯永存,丁泽晨. 考虑井筒加载历史的压裂过程中套管剪切变形数值模拟研究. 石油科学通报. 2021(02): 245-261 .
    22. 张鑫,李军,刘鹏林,郭雪利,韩葛伟. 断层滑移条件下页岩气井套管变形影响因素分析. 科学技术与工程. 2021(16): 6651-6656 .
    23. 陈朝伟,张浩哲,周小金,曹虎. 四川长宁页岩气套管变形井微地震特征分析. 石油地球物理勘探. 2021(06): 1286-1292+1198 .
    24. 张慧,李军,张小军,张鑫,连威. 页岩气井压裂液进入断层的途径及防控措施. 断块油气田. 2021(06): 750-754+760 .
    25. 林志伟,钟守明,宋琳,王雪刚,林铁军,于浩,史涛. 体积压裂改造非对称性对套管损坏影响机理. 特种油气藏. 2021(06): 158-164 .
    26. 陈朝伟,房超,朱勇,项德贵. 四川页岩气井套管变形特征及受力模式. 石油机械. 2020(02): 126-134 .
    27. 连威,李军,柳贡慧,席岩,韩葛伟. 水力压裂过程中页岩强度折减对套管变形的影响分析. 石油管材与仪器. 2020(04): 46-50 .
    28. 蒋振源,陈朝伟,张平,张丰收. 断块滑动引起的套管变形及影响因素分析. 石油管材与仪器. 2020(04): 30-37 .
    29. 范宇,黄锐,曾波,陈朝伟,周小金,项德贵,宋毅. 四川页岩气水力压裂诱发断层滑动和套管变形风险评估. 石油科学通报. 2020(03): 366-375 .
    30. 陈朝伟,曹虎,周小金,苟其勇,张浩哲. 四川盆地长宁区块页岩气井套管变形和裂缝带相关性. 天然气勘探与开发. 2020(04): 123-130 .
    31. 席岩,李军,柳贡慧,曾义金,李剑平. 页岩气水平井多级压裂过程中套管变形研究综述. 特种油气藏. 2019(01): 1-6 .
    32. 乔磊,田中兰,曾波,杨恒林,付盼,杨松. 页岩气水平井多因素耦合套变分析. 断块油气田. 2019(01): 107-110 .
    33. 高德利,刘奎. 页岩气井井筒完整性若干研究进展. 石油与天然气地质. 2019(03): 602-615 .
    34. 罗庆,黄华,徐菲,张立. 新型组合井况监测仪在普光高含硫气井的应用. 断块油气田. 2019(02): 240-243 .
    35. 陈朝伟,项德贵,张丰收,安孟可,尹子睿,蒋振源. 四川长宁—威远区块水力压裂引起的断层滑移和套管变形机理及防控策略. 石油科学通报. 2019(04): 364-377 .
    36. 周波,毛蕴才,查永进,汪海阁. 体积压裂水锤效应对页岩气井屏障完整性影响及对策. 石油钻采工艺. 2019(05): 608-613 .
    37. 郭雪利,李军,柳贡慧,陈朝伟,任凯,来东风. 基于震源机制的页岩气压裂井套管变形机理. 断块油气田. 2018(05): 665-669 .

    Other cited types(35)

Catalog

    Article Metrics

    Article views (7844) PDF downloads (6646) Cited by(72)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return