Citation: | LIN Yongxue, ZHEN Jianwu. Water Based Drilling Fluid Technology for Deep Shale Gas Horizontal Wells in Block Weiyuan[J]. Petroleum Drilling Techniques, 2019, 47(2): 21-27. DOI: 10.11911/syztjs.2019022 |
In order to solve the problem of wellbore instability in the horizontal section of deep shale gas horizontal wells in Block Weiyuan, a water based drilling fluid with strong inhibition and plugging capacity was developed. Through analysis on mineral composition, reservoir physical properties and wellbore instability mechanism in shale formation in Weiyuan Block, it was believed that the drilling fluid used in horizontal wells of this formation should have good performance in terms of inhibition, plugging and lubricity. The SM-ShaleMud water based drilling fluid suitable for deep shale gas horizontal wells was prepared by optimizing and selecting proper inhibitors, plugging agents and lubricants,, and the lab tests were conducted to evaluate its performance. The lab evaluation results showed that this drilling fluid had good rheological properties, high temperature high pressure (HTHP) fluid loss and low lubrication coefficient; SM-ShaleMud had temperature-resistance up to 140 °C, and presented good performance in inhibiting clay hydration and the generation and extension of fractures; this fluid system had been applied in three wells of Weiye 23 Platform in Weiyuan District, and achieved an excellent application effect. One point had to be stated that it ensured the wellbore stability after being soaked for 67 days, indicating the strong inhibition and plugging capacity. Research suggested that this water based drilling fluid system could solve the problem of wellbore instability in long horizontal section, and achieve a significant application effect, thereby demonstrating a good application prospective.
[1] |
孙四维, 刘学松, 范聪, 等. 页岩气水基钻井液技术分析[J]. 当代化工研究, 2017(11): 25–26. doi: 10.3969/j.issn.1672-8114.2017.11.015
SUN Siwei, LIU Xuesong, FAN Cong, et al. Shale gas water based drilling fluid technology analysis[J]. Chemical Intermediate, 2017(11): 25–26. doi: 10.3969/j.issn.1672-8114.2017.11.015
|
[2] |
高书阳,豆宁辉,林永学,等. 川渝地区龙马溪组页岩储层水化特征评价方法[J]. 石油钻探技术, 2018, 46(3): 20–26.
GAO Shuyang, DOU Ninghui, LIN Yongxue, et al. A new method for evaluating the characteristics of hydration in the Longmaxi Shale Gas Reservoir in Sichuan-Chongqing Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 20–26.
|
[3] |
林永学,高书阳,曾义金. 龙马溪组页岩强度评价与分析[J]. 石油钻探技术, 2015, 43(5): 20–25.
LIN Yongxue, GAO Shuyang, ZENG Yijin. Evaluation and analysis of rock strength for the Longmaxi Shale[J]. Petroleum Drilling Techniques, 2015, 43(5): 20–25.
|
[4] |
张国仿. 涪陵页岩气田低黏低切聚合物防塌水基钻井液研制及现场试验[J]. 石油钻探技术, 2016, 44(2): 22–27.
ZHANG Guofang. The development and field testing of low viscosity and low gel strength polymer collapse-resistant water-based drilling fluid in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(2): 22–27.
|
[5] |
谭秀华, 熊鑫, 曾强渗. 渝东南地区页岩气钻井泥浆优化技术[J]. 重庆科技学院学报(自然科学版), 2018, 20(1): 67–70. doi: 10.3969/j.issn.1673-1980.2018.01.016
TAN Xiuhua, XIONG Xin, ZENG Qiangshen. Optimization technology of shale gas drilling mud in Southeast Chongqing[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2018, 20(1): 67–70. doi: 10.3969/j.issn.1673-1980.2018.01.016
|
[6] |
王中华. 页岩气水平井钻井液技术的难点及选用原则[J]. 中外能源, 2012, 17(4): 43–47.
WANG Zhonghua. Difficulty and applicable principle of the drilling fluid technology of horizontal wells for shale gas[J]. Sino-Global Energy, 2012, 17(4): 43–47.
|
[7] |
王光兵, 刘向君, 梁利喜. 硬脆性页岩水化的超声波透射实验研究[J]. 科学技术与工程, 2017, 17(36): 60–66. doi: 10.3969/j.issn.1671-1815.2017.36.010
WANG Guangbing, LIU Xiangjun, LIANG Lixi. Ultrasonic transmission experimental investigation on hydration of hard brittle shale[J]. Science Technology and Engineering, 2017, 17(36): 60–66. doi: 10.3969/j.issn.1671-1815.2017.36.010
|
[8] |
罗诚, 吴婷, 朱哲显. 硬脆性泥页岩井壁稳定性研究[J]. 西部探矿工程, 2013, 25(6): 50–52. doi: 10.3969/j.issn.1004-5716.2013.06.017
LUO Cheng, WU Ting, ZHU Zhexian. Study on the wellbore stability of hard brittle shale[J]. West-China Exploration Engineering, 2013, 25(6): 50–52. doi: 10.3969/j.issn.1004-5716.2013.06.017
|
[9] |
丁乙, 张安东. 川南龙马溪页岩地层井壁失稳实验研究[J]. 科学技术与工程, 2014, 14(15): 25–28, 42. doi: 10.3969/j.issn.1671-1815.2014.15.005
DING Yi, ZHANG Andong. Experiment research of borehole instability of shale in Longmaxi Formation of South Sichuan[J]. Science Technology and Engineering, 2014, 14(15): 25–28, 42. doi: 10.3969/j.issn.1671-1815.2014.15.005
|
[10] |
刘洋洋, 邓明毅, 谢刚, 等. 基于压力传递的钻井液纳米封堵剂研究与应用[J]. 钻井液与完井液, 2017, 34(6): 24–28, 34. doi: 10.3969/j.issn.1001-5620.2017.06.005
LIU Yangyang, DENG Mingyi, XIE Gang, et al. Study and application of a drilling fluid plugging agent based on pressure transfer inhibition[J]. Drilling Fluid & Completion Fluid, 2017, 34(6): 24–28, 34. doi: 10.3969/j.issn.1001-5620.2017.06.005
|
[11] |
钟汉毅, 黄维安, 林永学, 等. 新型聚胺页岩抑制剂性能评价[J]. 石油钻探技术, 2011, 39(6): 44–48. doi: 10.3969/j.issn.1001-0890.2011.06.011
ZHONG Hanyi, HUANG Weian, LIN Yongxue, et al. Properties evaluation of a novel polyamine shale inhibitor[J]. Petroleum Drilling Techniques, 2011, 39(6): 44–48. doi: 10.3969/j.issn.1001-0890.2011.06.011
|
[12] |
王琳, 董晓强, 杨小华, 等. 高密度钻井液用润滑剂SMJH-1的研制及性能评价[J]. 钻井液与完井液, 2016, 33(1): 28–32.
WANG Lin, DONG Xiaoqiang, YANG Xiaohua, et al. Development and evaluation of a high density drilling fluid lubricant[J]. Drilling Fluid & Completion Fluid, 2016, 33(1): 28–32.
|
1. |
魏文绮,蒋敏,罗烈强,金志轩. 一种自研水泥浆在榆37区块储气库井中的应用. 当代化工研究. 2025(03): 143-145 .
![]() | |
2. |
徐小峰,吴艳,宋巍,况雨春,廖利梅. 裸眼冲探PDC钻头设计与钻进仿真研究. 石油机械. 2025(05): 56-62 .
![]() | |
3. |
秦春,刘纯仁,陈文可,蔡巍,张序强,陈军. 朱家墩构造枯竭气藏储气库水平井钻完井技术. 石油钻采工艺. 2025(01): 23-28 .
![]() | |
4. |
纪文栋,万继方,贺育贤,李景翠,刘伟,孙鹏. 中国盐穴储氢关键技术现状及展望. 石油钻探技术. 2024(04): 158-166 .
![]() | |
5. |
李娟,郭辛阳. 储气库井注采工况对水泥环密封压力的影响. 当代化工. 2024(11): 2560-2563 .
![]() | |
6. |
袁光杰,张玉达,董京楠,夏焱,班凡生,关跃阳. 油气井筒出砂理论技术新进展. 科学技术与工程. 2023(07): 2694-2704 .
![]() | |
7. |
贾善坡,温曹轩,付晓飞,宋文礼,张玥,仲国生,史集建. 气藏型储气库盖层应力场演化规律解析. 石油学报. 2023(06): 983-999 .
![]() | |
8. |
廖权文,胡建均,史怀忠,宋恒宇. 文23储气库钻井工程关键技术. 石油钻采工艺. 2023(02): 160-166 .
![]() | |
9. |
陈芳,马平平,杨立军,刘文超. 温西超低压储气库钻完井工程技术优化. 石油钻采工艺. 2023(02): 167-172 .
![]() | |
10. |
敬俊,单鸿斌,祝效华,孙汉文,许尔跃. 交变热载荷下水泥环缺陷对储气库井储层段套管的影响. 断块油气田. 2023(04): 685-691+697 .
![]() | |
11. |
完颜祺琪,王云,李东旭,胥洪成,李春,李康,李景翠,李丽锋. 复杂地质条件下储气库建设安全运行技术进展. 油气储运. 2023(10): 1092-1099 .
![]() | |
12. |
赵杰,陈志鑫,翟羽佳,马博昭,王亚青. 油气藏型储气库钻井工程质量管理创新实践. 石油知识. 2023(05): 36-37 .
![]() | |
13. |
丁国生,王云,完颜祺琪,王皆明,胥洪成,李康,夏焱,李丽锋,曾德军,刘主宸. 不同类型复杂地下储气库建库难点与攻关方向. 天然气工业. 2023(10): 14-23 .
![]() | |
14. |
王博,赵春,陈显学. 双6储气库大尺寸注采井钻井技术. 石油钻采工艺. 2023(04): 410-417 .
![]() | |
15. |
高玮,黄中伟,李敬彬,谷子昂,王斌. 储气库救援井水力喷砂定向射孔封井技术及应用. 钻采工艺. 2023(05): 47-53 .
![]() | |
16. |
杨金龙. LN-平1浅层储气库先导试验水平井钻完井关键技术. 西部探矿工程. 2023(12): 73-76+80 .
![]() | |
17. |
魏斯壮. 定向井钻井速度的影响因素及提高方法分析. 天津化工. 2022(01): 84-87 .
![]() | |
18. |
刘自广. 文23枯竭砂岩型储气库微泡钻井液技术. 钻探工程. 2022(02): 117-122 .
![]() | |
19. |
刘建勋,刘岩. 中国地下储气库建设的发展现状及展望. 应用化工. 2022(04): 1136-1140+1145 .
![]() | |
20. |
董长银,陈琛,周博,隋义勇,王兴,王金忠. 油气藏型储气库出砂机理及防砂技术现状与发展趋势展望. 石油钻采工艺. 2022(01): 43-55 .
![]() | |
21. |
黄家根,段忠国,田霄,赵俊杰. 苏东39-61储气库钻井技术难点及对策. 石化技术. 2022(06): 54-56 .
![]() | |
22. |
李建君. 中国地下储气库发展现状及展望. 油气储运. 2022(07): 780-786 .
![]() | |
23. |
胡一鸣,于晓东,翁广超. 磁导向钻井技术在井眼重入中的应用. 天然气勘探与开发. 2022(03): 57-66 .
![]() | |
24. |
张弘,袁光杰,万继方,张施琦,李景翠,刘天恩,庞宇晗. P110级管材在含氢储气库环境中的腐蚀行为. 天然气工业. 2022(11): 117-123 .
![]() | |
25. |
刘慧,丁心鲁,张士杰,方云贵,郝晓波,郑玮鸽. 地下储气库注气过程一体化压力及地层参数计算方法. 石油钻探技术. 2022(06): 64-71 .
![]() | |
26. |
张守秋. 低温易漏储气库固井技术的改进创新实践. 西部探矿工程. 2022(11): 83-84 .
![]() | |
27. |
傅永强,陈建波,刘可可,王天雨,麻超,刘似晏. 阵列声波测井评价储气库大直径套管固井质量. 测井技术. 2022(06): 768-773 .
![]() | |
28. |
车阳,王金忠,晋新伟,胡勇科,胡一鸣,余文艳,杜卫强,蓝海峰. 地下储气库多井眼重入封井技术研究及应用. 石油钻采工艺. 2022(04): 415-421 .
![]() | |
29. |
孙春芬,赵连增,罗敏,洪波. 储气库与油田开发协同建设经济评价模型及经济性研究. 油气与新能源. 2021(04): 53-59 .
![]() | |
30. |
党文辉,刘天恩,袁光杰,钟守明,李国韬,宋琳,张弘. 呼图壁储气库勺型水平井钻井关键技术. 石油钻采工艺. 2021(05): 593-600 .
![]() | |
31. |
潘荣山,董英春,殷鹏,朱健军,张春祥. CK储气库钻井液屏蔽暂堵技术研究及应用. 采油工程. 2020(04): 71-76+84 .
![]() |