YAO Xiao, GE Zhuang, WANG Xiaojing, ZHOU Shiming, XIE Zhiyi, HE Qingshui. Research Progress of Degradation of Mechanical Properties of Sand-Containing Cement in High Temperature Regimes[J]. Petroleum Drilling Techniques, 2018, 46(1): 17-23. DOI: 10.11911/syztjs.2018008
Citation: YAO Xiao, GE Zhuang, WANG Xiaojing, ZHOU Shiming, XIE Zhiyi, HE Qingshui. Research Progress of Degradation of Mechanical Properties of Sand-Containing Cement in High Temperature Regimes[J]. Petroleum Drilling Techniques, 2018, 46(1): 17-23. DOI: 10.11911/syztjs.2018008

Research Progress of Degradation of Mechanical Properties of Sand-Containing Cement in High Temperature Regimes

More Information
  • Received Date: July 02, 2017
  • Revised Date: January 07, 2018
  • Sand-containing cement,as the most common cementing material used in high temperature regimes,can encounter problems such as serious degradation of mechanical properties and failure of interval sealing of cement sheath in short time when being applied to high-temperature formations.Hence,the identification of a failure mechanism of mechanical properties under high temperature should facilitate the rational usage of sand-containing cement.By investigating the relevant domestic and overseas documents surrounding the effects of high-temperature hydration products and sand (with factors of quantity and grain size considered) mixed in sand-containing cement on its mechanical properties,it is possible to summarize and analyze the results in a single paper. Results indicated that the sand-containing cement could resist high temperature in a long term under 110-210℃;under the static water environment of 210-300℃,and that this formulation was capable of slowing down the degradation of mechanical properties of cement through adjusting the granular composition of quartz sand.Results also found that under the formation temperature of higher than 300℃ and with a dynamic water environment with a large quantity of SiO2 dissolved out,the sand-containing cement couldn’t meet the quality technical requirements for cementing the targeted thermal production wells.Further,based on the analysis of the phenomena of silicon separated from sand-containing cement and the decalcification of hydration products,along with the variation of morphology of xonotlite crystalline grains,it was possible to analyze and model the failure mechanism of mechanical properties of sand-containing cement under high temperature.At the end,recommendations for technical measures that would improve the properties were proposed and advanced.
  • [1]
    REDDY B R,ZHANG Jilin,ELLIS M.Cement strength retrogression issues in offshore deep water applications:do we know enough for safe cementing[R].OTC 27012,2016.
    [2]
    2010年固井技术研讨会论文集编委会.2010年固井技术研讨会论文集[M].北京:石油工业出版社,2010:43-48. Editorial board of symposium of the 2010 cementing technology.Symposium of the 2010 cementing technology conference[M].Beijing:Petroleum Industry Press 2010:43-48.
    [3]
    PANG Xueyu,MEYER C,FUNKHOUSER G P,et al.Depressurization damage of oil well cement cured for 3 days at various pressures[J].Construction Building Materials,2015,74:268-277.
    [4]
    MA Cong,CHEN Longzhu,CHEN Bing.Analysis of strength development in soft clay stabilized with cement-based stabilize[J].Construction Building Materials,2014,71:354-362.
    [5]
    WON J,LEE D,NA K,et al.Physical properties of G-class cement for geothermal well cementing in South Korea[J].Renewable Energy,2015,80:123-131.
    [6]
    ZHU Huajun,WU Qisheng,ZHANG Changsen,et al.Thermal stability and structural characterization of class G oil well cement paste exposed to elevated temperature[J].Journal of Materials in Civil Engineering,2015,27(11):04015014
    [7]
    张景富,徐明,闫占辉,等.高温条件下G级油井水泥原浆及加砂水泥的水化和硬化[J].硅酸盐学报,2008,36(7):939-945. ZHANG Jingfu,XU Ming,YAN Zhanhui,et al.Hydration and hardening of class G oilwell cement with and without silica sands under high temperatures[J].Journal of the Chinese Ceramic Society,2008,36(7):939-945.
    [8]
    EILERS L H,NELSON E B,MORAN L K.High-temperature cement compositions-pectolite,scawtite,truscottite,or xonotlite:which do you want[J].Journal of Petroleum Technology,1983,35(7):1373-1377.
    [9]
    杨智光,崔海清,肖志兴.深井高温条件下油井水泥强度变化规律研究[J].石油学报,2008,29(3):435-437. YANG Zhiguang,CUI Haiqing,XIAO Zhixing.Change of cement stone strength in the deep high temperature oil well[J].Acta Petrolei Sinica,2008,29(3):435-437.
    [10]
    EILERS L H,ROOT R L.Long-term effects of high temperatureon strength retrogression of cements[R].SPE 5871,1976.
    [11]
    EILERS L H,ROOT R L.Long-term effects of high temperature on strength retrogression of cements[R].SPE 5028,1974.
    [12]
    BEZERRA U T,MARTINELLIA A E,MELO D M A,et al.The strength retrogression of special class Portland oilwell cement[J].Cermica,2011,57(342):150-154.
    [13]
    PERNITES R B,SANTRA A K.Portland cement solutions for ultra-high temperature wellbore applications[J].Cement and Concrete Composites,2016,72:89-103.
    [14]
    王景建,冯克满,许前富,等.高温下加砂G级油井水泥强度发展规律研究[J].长江大学学报(自科版),2011,8(3):52-54. WANG Jingjian,FENG Keman,XU Qianfu,et al.The research of class G oil well cement strength development under the high temperature[J].Journal of Yangtze university (Natural Science Edition),2011,8(3):52-54.
    [15]
    NELSON E B,GUILLOT D.Well Cementing[M].2nd ed.New York:Schlumberger,2006.
    [16]
    袁润章,李荣先,徐家保.中国土木建筑百科辞典:工程材料(上册)[M].北京:中国建筑工业出版社,2008:460-580. YUAN Runzhang,LI Rongxian,XU Jiabao.Encyclopedia of Chinese civil architecture:engineering materials (I)[M].Beijing:China Architecture Building Industry Press,2008:460-580.
    [17]
    杨南如,岳文海.无机非属材料图谱手册[M].武汉:武汉工业大学出版社,2000:250-252. YANG Nanru,YUE Wenhai.The handbook of inorganic metalloid materials atlas[M].Wuhan:Wuhan University of Technology Press,2000:250-252.
    [18]
    柯昌君.低碱度钢渣水热反应特性及其机理的研究[J].建筑材料学报,2007,10(2):142-147. KE Changjun.Hydrothermal performance and its mechanism of low alkalinity steel slag in autoclaved condition[J].Journal of Building Materials,2007,10(2):142-147.
    [19]
    丁树修.高温地热井水泥水化硬化的研究[J].硅酸盐学报,1996,24(4):389-399. DING Shuxiu.High temperature geothermal well cement hydration hardening research[J].Journal of the Chinese Ceramic Society,1996,24(4):389-399.
    [20]
    MOREY G W,FOURNIER R O,ROW E J J.The solubility of quartz in water in the temperature interval from 25℃ to 300℃[J].Geochimica et Cosmochimica Acta,1962,26(10):1029-1040.
    [21]
    WEILL D F,FYFE W S.The solubility of quartz in H2O in the range 1000-4000 bars and 400-550℃[J].Geochimica et Cosmochimica Acta,1964,28(8):1243-1255.
    [22]
    BRANDL A,BRAY W S,DOHERTY D R.Technically and economically improved cementing system with sustainable components[R].SPE 136276,2010.
    [23]
    格鲁特F F.岩石手册[M].张瑞锡,汪正然,译.上海:上海科学技术出版社,1959:44-60,121-164,179-190. GROUT F F.Rock hand book[M].ZHANG Ruixi,WANG Zhengran,translated.Shanghai:Shanghai Scientific Technical Publishers,1959:44-60,121-164,179-190.
    [24]
    张生,李统锦.二氧化硅溶解度方程和地温计[J].地质科技情报,1997,16(1):55-58. ZHANG Sheng,LI Tongjin.Silicon dioxide solubility equation and geothermometer of silica-an overview[J].Geological Science and Technology Information,1997,16(1):55-58.
    [25]
    CHENC A,MARSHALL W L.Amorphous silica solubility IV:behavior in pure water and aqueous sodium chloride,sodium sulfate,magnesium chloride,and magnesium sulfate solutions up to 350℃[J].Geochimica et Cosmochimica Acta,1982,46(2):279-287.
    [26]
    何真,王磊,邵一心,等.脱钙对水泥浆体中C-S-H凝胶结构的影响[J].建筑材料学报,2011,14(3):293-298. HE Zhen,WANG Lei,SHAO Yixin,et al.Effect of decalcification on C-S-H gel microstructure in cement paste[J].Journal of Building Materials,2011,14(3):293-298.
    [27]
    CHEN J J,THOMAS J J,JENNINGS H M.Decalcification shrinkage of cement paste[J].Cement and Concrete Research,2006,36(5):801-809.
    [28]
    COLEMAN N J,BRASSINGTON D S.Synthesis of Al-substituted 11 tobermorite from newsprint recycling residue:a feasibility study[J].Materials Research Bulletin,2003,38(3):485-497.
    [29]
    KRAKOWIAK K J,THOMAS J J,MUSSO S,et al.Nano-chemo-mechanical signature of conventional oil-well cement systems:effects of elevated temperature and curing time[J].Cement and Concrete Research,2015,67:103-121.
    [30]
    THOMAS J,JAMES,S,ORTEGA J A,et al.Fundamental investigation of the chemical and mechanical properties of high-temperature-cured oil well cement[R].OTC 23668,2012.
    [31]
    张景富,俞庆森,徐明,等.G级油井水泥的水化及硬化[J].硅酸盐学报,2002,30(2):167-171. ZHANG Jingfu,YU Qingsen,XU Ming,et al.Hydration and hardening of class G oilwell cement[J].Journal of the Chinese Ceramic Society,2002,30(2):167-171.
    [32]
    SIRAPIAN A C,PERSHIKOVA E M,LOISEAU A.New steam resilient cement:evaluation of long-term properties under extreme conditions[R].SPE 141202,2011.
    [33]
    SALEHPOUR A G,PERSHIKOVA E,CHOUGNET-SIRAPIAN A,et al.Novel steam-resilient cement system for long-term steam injection well integrity:case study of a steam flooded field in Indonesia[R].SPE 166994,2013.
    [34]
    KRAKOWIAK K J,WILSON W,JAMES S,et al.Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis:application to cement-based materials[J].Cement and Concrete Research,2015,67:271-285.
    [35]
    SUYAN K M,DASGUPTA D,GARG S P,et al.Novel cement composition for completion of thermal recovery (ISC) wellbores[R].SPE 101848,2006.
    [36]
    DOHERTY D R,BRANDL A.Pushing Portland cement beyond the norm of extreme high temperature[R].SPE 134422,2010.
    [37]
    STILES D.Effects of long-term exposure to ultrahigh temperature on the mechanical parameters of cement[R].SPE 98896,2006.
    [38]
    VIPULANANDAN C,MOHAMMED A.Smart cement modified with iron oxide nanoparticles to enhance the piezoresistive behavior and compressive strength for oil well applications[J].Smart Materials and Structures,2015,24(12):125-132.
    [39]
    DE PAULA J N,CALIXTO J M,LADEIRA L O,et al.Mechanical and rheological behavior of oil-well cement slurries produced with clinker containing carbon nanotubes[J].Journal of Petroleum Science and Engineering,2014,122:274-279.
    [40]
    WANG Chengwen,CHEN Xin,WEI Xiaotong,et al.Can nanosilica sol prevent oil well cement from strength retrogression under high temperature?[J].Construction and Building Materials,2017,144:574-585.
    [41]
    El-GAMAL S M A,HASHEM F S,AMIN M S.Influence of carbon nanotubes,nanosilica and nanometakaolin on some morphological-mechanical properties of oil well cement pastes subjected to elevated water curing temperature and regular room air curing temperature[J].Construction and Building Materials,2017,146:531-546.
    [42]
    SUN Xiuxuan,WU Qinglin,ZHANG Jinlong,et al.Rheology,curing temperature and mechanical performance of oil well cement:combined effect of cellulose nanofibers and graphene nano-platelets[J].Materials Design,2017,114:92-101.
    [43]
    路飞飞,李斐,田娜娟,等.复合加砂抗高温防衰退水泥浆体系[J].钻井液与完井液,2017,34(4):85-89. LU Feifei.LI Fei,TIAN Najuan,et al.High termperatare anti stength retrogression cement slurry with compoumded silica powder[J].Drilling Fluid Completion Fluid,2017,34(4):85-89.
  • Related Articles

    [1]YAO Jun, WANG Chunqi, HUANG Zhaoqin, YANG Yongfei, SUN Hai, ZHANG Lei. Digital Core Construction Methods for High Stress in Deep and Ultra-Deep Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(2): 38-47. DOI: 10.11911/syztjs.2024039
    [2]WANG Qinghui, ZHU Ming, FENG Jin, GUAN Yao, HOU Boheng. A Method for Predicting Productivity of Sandstone Reservoirs Based on Permeability Synthesis Technology[J]. Petroleum Drilling Techniques, 2021, 49(6): 105-112. DOI: 10.11911/syztjs.2021122
    [3]ZHOU Peng, DU Xiaoyou, CAO Yanfeng, YU Jifei, JIANG Haiwei, XUE Qilong. Experimental Research on Permeability Enhancement and Plug Removal by Means of an Electric Explosion Shock Wave[J]. Petroleum Drilling Techniques, 2020, 48(2): 98-103. DOI: 10.11911/syztjs.2020033
    [4]LI Zifeng, ZHENG Yiqing. Discussion on a New Methods for the Characterization of the Swelling and Compression in Porous Rocks in Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(3): 1-6. DOI: 10.11911/syztjs.2018066
    [5]ZHU Linqi, ZHANG Chong, HU Jia, WEI Yang, GUO Cong. An NMR Logging Permeability Evaluation Method Based on the Representative Elementary Volume Model[J]. Petroleum Drilling Techniques, 2016, 44(4): 120-126. DOI: 10.11911/syztjs.201604021
    [6]Li Rongqiang, Gao Ying, Yang Yongfei, Li Yang, Yao Jun. Experimental Study on the Pressure Sensitive Effects of Cores Based on CT Scanning[J]. Petroleum Drilling Techniques, 2015, 43(5): 37-43. DOI: 10.11911/syztjs.201505007
    [7]Zhou Wensheng, Xiong Yu, Xu Hongguang, Zhang Wei, Wang Shuai. Physical Properties and Seepage Characteristics of Unconsolidated Sandstone under Re-Compaction[J]. Petroleum Drilling Techniques, 2015, 43(4): 118-123. DOI: 10.11911/syztjs.201504021
    [8]Guo Shenglai, Li Jianhua, Bu Yuhuan. Effect of Physical and Chemical Excitation on Slag Activity under Low Temperature[J]. Petroleum Drilling Techniques, 2013, 41(3): 31-34. DOI: 10.3969/j.issn.1001-0890.2013.03.006
    [9]Chen Zhaohui, Xie Yiting, Deng Yong. Experimental Study on Sanding Stress Sensitivity in Unconsolidated Sandstone Reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(1): 61-64. DOI: 10.3969/j.issn.1001-0890.2013.01.012
    [10]Xu Chengyuan, Kang Yili, You Lijun, Wang Mingwei, Li Daqi. Influential Factors on Permeability Recovery during Flowback of Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2012, 40(6): 17-21. DOI: 10.3969/j.issn.1001-0890.2012.06.004
  • Cited by

    Periodical cited type(24)

    1. 高元,李小江,刘仍光. 超高温井固井水泥浆体系研究与应用. 钻探工程. 2025(01): 109-114 .
    2. 李小江,王越洋,肖京男,魏浩光,杨睿月. 硅酸盐水泥石超高温干热环境热损伤规律. 钻井液与完井液. 2025(02): 247-254 .
    3. 李盼盼,李明泽,徐萍,白永泰,吕宝玉,王璐. 石英砂细度和掺量对G级油井水泥浆体系性能的影响. 水泥. 2024(01): 14-17 .
    4. 肖京男,李小江,周仕明,魏浩光,杨红歧. 干热岩超高温防衰退水泥浆体系及应用. 钻井液与完井液. 2024(01): 92-97 .
    5. 邱康,崔强,熊振宇,王颖,范鸿飞. 莺琼盆地高温高含CO_2环境水泥石腐蚀规律及机理研究. 海洋石油. 2024(02): 80-83 .
    6. 赵峰,曾雪玲,龙丹,古安林,张凌志,王佳,魏雪琦. 锆英石掺量对加砂油井水泥高温性能的影响研究. 水泥. 2024(07): 13-18 .
    7. 徐大伟,汪晓静,徐春虎,魏浩光,常连玉. 且深1井盐层尾管超高温高密度固井水泥浆技术. 钻井液与完井液. 2024(05): 622-629 .
    8. 赵琥,马春旭,宋维凯,田野,邹亦玮,孙超. 空心微珠低密度水泥浆在高温下的水化特性. 钻井液与完井液. 2024(05): 654-660 .
    9. 袁彬,赵清立,徐璧华,冯青豪,杨川. 南海180℃超高温CO_2环境下水泥石强度衰退机理. 材料导报. 2024(S2): 170-174 .
    10. 赵昆鹏,王涛,郭春,罗阳利,韦庭丛,梅开元,张春梅,赵峰,程小伟. 高温下赤泥与硅粉协同强化固井水泥石力学性能. 中国粉体技术. 2023(02): 74-80 .
    11. 徐小峰,宋巍,杨燕,李祥银,周岩,冯福平,韩旭,刘圣源. 页岩储层水平井固井水泥浆体系应用研究进展. 科学技术与工程. 2023(17): 7161-7173 .
    12. 党冬红,刘宁泽,王丹,梅开元,程小伟,孙兴嘉. 干热岩工况下水泥高温劣化性能的调控措施. 钻井液与完井液. 2023(03): 368-375 .
    13. 赵峰,曾雪玲,龙丹,古安林,喻庆华. 超高温固井水泥添加剂研选及工程性能评价. 钻采工艺. 2023(04): 131-136 .
    14. 杨雨,汪启龙,杨东,瞿勇,张浩,王凯鹏. 导热填料对地热井固井材料性能及结构的影响. 钻采工艺. 2022(01): 59-64 .
    15. 何立成. 胜利油田沙河街组页岩油水平井固井技术. 石油钻探技术. 2022(02): 45-50 . 本站查看
    16. 侯海欧. 稠油热采井固井低密度水泥浆体系研究与应用. 中国石油和化工标准与质量. 2022(07): 111-113 .
    17. 周崇峰,费中明,李德伟,赵江波,蒋世伟,刘慧婷,徐明. 一种新型超高温固井水泥石抗强度衰退材料. 钻井液与完井液. 2022(01): 71-75 .
    18. 郤一臻,赵福金,荆京,祁国华,张勃. 山西干热岩GR1井高温固井技术研究与实践. 钻探工程. 2022(06): 42-47 .
    19. 杨仲涵,罗鸣,陈江华,许发宾,徐靖. 莺歌海盆地超高温高压井挤水泥承压堵漏技术. 石油钻探技术. 2020(03): 47-51 . 本站查看
    20. 李全双,王治国,邹书强. 适用于干热岩固井抗高温高强度水泥浆体系研究. 中国石油和化工标准与质量. 2020(10): 164-167+169 .
    21. 张华,靳建洲,刘明涛,肖云峰,张晓兵,郭锦棠,张同颖. 稠油热采井抗350℃高温硅酸盐基水泥浆. 钻井液与完井液. 2020(03): 363-366 .
    22. 耿晨梓,姚晓,代丹,黎学年,姜涛,闫联国,吴学超. SiO_2晶态物性对高温水泥石力学性能的影响. 钻井液与完井液. 2020(06): 777-783 .
    23. 于永金,丁志伟,张弛,张华,郭锦棠. 抗循环温度210℃超高温固井水泥浆. 钻井液与完井液. 2019(03): 349-354 .
    24. 马志亮,郝红永,谢志涛,翟晓鹏,张瀚之. 微硅砂含量对热采井固井水泥强度影响研究. 当代化工研究. 2019(09): 72-74 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (4611) PDF downloads (4247) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return