Citation: | YAO Xiao, GE Zhuang, WANG Xiaojing, ZHOU Shiming, XIE Zhiyi, HE Qingshui. Research Progress of Degradation of Mechanical Properties of Sand-Containing Cement in High Temperature Regimes[J]. Petroleum Drilling Techniques, 2018, 46(1): 17-23. DOI: 10.11911/syztjs.2018008 |
[1] |
REDDY B R,ZHANG Jilin,ELLIS M.Cement strength retrogression issues in offshore deep water applications:do we know enough for safe cementing[R].OTC 27012,2016.
|
[2] |
2010年固井技术研讨会论文集编委会.2010年固井技术研讨会论文集[M].北京:石油工业出版社,2010:43-48. Editorial board of symposium of the 2010 cementing technology.Symposium of the 2010 cementing technology conference[M].Beijing:Petroleum Industry Press 2010:43-48.
|
[3] |
PANG Xueyu,MEYER C,FUNKHOUSER G P,et al.Depressurization damage of oil well cement cured for 3 days at various pressures[J].Construction Building Materials,2015,74:268-277.
|
[4] |
MA Cong,CHEN Longzhu,CHEN Bing.Analysis of strength development in soft clay stabilized with cement-based stabilize[J].Construction Building Materials,2014,71:354-362.
|
[5] |
WON J,LEE D,NA K,et al.Physical properties of G-class cement for geothermal well cementing in South Korea[J].Renewable Energy,2015,80:123-131.
|
[6] |
ZHU Huajun,WU Qisheng,ZHANG Changsen,et al.Thermal stability and structural characterization of class G oil well cement paste exposed to elevated temperature[J].Journal of Materials in Civil Engineering,2015,27(11):04015014
|
[7] |
张景富,徐明,闫占辉,等.高温条件下G级油井水泥原浆及加砂水泥的水化和硬化[J].硅酸盐学报,2008,36(7):939-945. ZHANG Jingfu,XU Ming,YAN Zhanhui,et al.Hydration and hardening of class G oilwell cement with and without silica sands under high temperatures[J].Journal of the Chinese Ceramic Society,2008,36(7):939-945.
|
[8] |
EILERS L H,NELSON E B,MORAN L K.High-temperature cement compositions-pectolite,scawtite,truscottite,or xonotlite:which do you want[J].Journal of Petroleum Technology,1983,35(7):1373-1377.
|
[9] |
杨智光,崔海清,肖志兴.深井高温条件下油井水泥强度变化规律研究[J].石油学报,2008,29(3):435-437. YANG Zhiguang,CUI Haiqing,XIAO Zhixing.Change of cement stone strength in the deep high temperature oil well[J].Acta Petrolei Sinica,2008,29(3):435-437.
|
[10] |
EILERS L H,ROOT R L.Long-term effects of high temperatureon strength retrogression of cements[R].SPE 5871,1976.
|
[11] |
EILERS L H,ROOT R L.Long-term effects of high temperature on strength retrogression of cements[R].SPE 5028,1974.
|
[12] |
BEZERRA U T,MARTINELLIA A E,MELO D M A,et al.The strength retrogression of special class Portland oilwell cement[J].Cermica,2011,57(342):150-154.
|
[13] |
PERNITES R B,SANTRA A K.Portland cement solutions for ultra-high temperature wellbore applications[J].Cement and Concrete Composites,2016,72:89-103.
|
[14] |
王景建,冯克满,许前富,等.高温下加砂G级油井水泥强度发展规律研究[J].长江大学学报(自科版),2011,8(3):52-54. WANG Jingjian,FENG Keman,XU Qianfu,et al.The research of class G oil well cement strength development under the high temperature[J].Journal of Yangtze university (Natural Science Edition),2011,8(3):52-54.
|
[15] |
NELSON E B,GUILLOT D.Well Cementing[M].2nd ed.New York:Schlumberger,2006.
|
[16] |
袁润章,李荣先,徐家保.中国土木建筑百科辞典:工程材料(上册)[M].北京:中国建筑工业出版社,2008:460-580. YUAN Runzhang,LI Rongxian,XU Jiabao.Encyclopedia of Chinese civil architecture:engineering materials (I)[M].Beijing:China Architecture Building Industry Press,2008:460-580.
|
[17] |
杨南如,岳文海.无机非属材料图谱手册[M].武汉:武汉工业大学出版社,2000:250-252. YANG Nanru,YUE Wenhai.The handbook of inorganic metalloid materials atlas[M].Wuhan:Wuhan University of Technology Press,2000:250-252.
|
[18] |
柯昌君.低碱度钢渣水热反应特性及其机理的研究[J].建筑材料学报,2007,10(2):142-147. KE Changjun.Hydrothermal performance and its mechanism of low alkalinity steel slag in autoclaved condition[J].Journal of Building Materials,2007,10(2):142-147.
|
[19] |
丁树修.高温地热井水泥水化硬化的研究[J].硅酸盐学报,1996,24(4):389-399. DING Shuxiu.High temperature geothermal well cement hydration hardening research[J].Journal of the Chinese Ceramic Society,1996,24(4):389-399.
|
[20] |
MOREY G W,FOURNIER R O,ROW E J J.The solubility of quartz in water in the temperature interval from 25℃ to 300℃[J].Geochimica et Cosmochimica Acta,1962,26(10):1029-1040.
|
[21] |
WEILL D F,FYFE W S.The solubility of quartz in H2O in the range 1000-4000 bars and 400-550℃[J].Geochimica et Cosmochimica Acta,1964,28(8):1243-1255.
|
[22] |
BRANDL A,BRAY W S,DOHERTY D R.Technically and economically improved cementing system with sustainable components[R].SPE 136276,2010.
|
[23] |
格鲁特F F.岩石手册[M].张瑞锡,汪正然,译.上海:上海科学技术出版社,1959:44-60,121-164,179-190. GROUT F F.Rock hand book[M].ZHANG Ruixi,WANG Zhengran,translated.Shanghai:Shanghai Scientific Technical Publishers,1959:44-60,121-164,179-190.
|
[24] |
张生,李统锦.二氧化硅溶解度方程和地温计[J].地质科技情报,1997,16(1):55-58. ZHANG Sheng,LI Tongjin.Silicon dioxide solubility equation and geothermometer of silica-an overview[J].Geological Science and Technology Information,1997,16(1):55-58.
|
[25] |
CHENC A,MARSHALL W L.Amorphous silica solubility IV:behavior in pure water and aqueous sodium chloride,sodium sulfate,magnesium chloride,and magnesium sulfate solutions up to 350℃[J].Geochimica et Cosmochimica Acta,1982,46(2):279-287.
|
[26] |
何真,王磊,邵一心,等.脱钙对水泥浆体中C-S-H凝胶结构的影响[J].建筑材料学报,2011,14(3):293-298. HE Zhen,WANG Lei,SHAO Yixin,et al.Effect of decalcification on C-S-H gel microstructure in cement paste[J].Journal of Building Materials,2011,14(3):293-298.
|
[27] |
CHEN J J,THOMAS J J,JENNINGS H M.Decalcification shrinkage of cement paste[J].Cement and Concrete Research,2006,36(5):801-809.
|
[28] |
COLEMAN N J,BRASSINGTON D S.Synthesis of Al-substituted 11 tobermorite from newsprint recycling residue:a feasibility study[J].Materials Research Bulletin,2003,38(3):485-497.
|
[29] |
KRAKOWIAK K J,THOMAS J J,MUSSO S,et al.Nano-chemo-mechanical signature of conventional oil-well cement systems:effects of elevated temperature and curing time[J].Cement and Concrete Research,2015,67:103-121.
|
[30] |
THOMAS J,JAMES,S,ORTEGA J A,et al.Fundamental investigation of the chemical and mechanical properties of high-temperature-cured oil well cement[R].OTC 23668,2012.
|
[31] |
张景富,俞庆森,徐明,等.G级油井水泥的水化及硬化[J].硅酸盐学报,2002,30(2):167-171. ZHANG Jingfu,YU Qingsen,XU Ming,et al.Hydration and hardening of class G oilwell cement[J].Journal of the Chinese Ceramic Society,2002,30(2):167-171.
|
[32] |
SIRAPIAN A C,PERSHIKOVA E M,LOISEAU A.New steam resilient cement:evaluation of long-term properties under extreme conditions[R].SPE 141202,2011.
|
[33] |
SALEHPOUR A G,PERSHIKOVA E,CHOUGNET-SIRAPIAN A,et al.Novel steam-resilient cement system for long-term steam injection well integrity:case study of a steam flooded field in Indonesia[R].SPE 166994,2013.
|
[34] |
KRAKOWIAK K J,WILSON W,JAMES S,et al.Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis:application to cement-based materials[J].Cement and Concrete Research,2015,67:271-285.
|
[35] |
SUYAN K M,DASGUPTA D,GARG S P,et al.Novel cement composition for completion of thermal recovery (ISC) wellbores[R].SPE 101848,2006.
|
[36] |
DOHERTY D R,BRANDL A.Pushing Portland cement beyond the norm of extreme high temperature[R].SPE 134422,2010.
|
[37] |
STILES D.Effects of long-term exposure to ultrahigh temperature on the mechanical parameters of cement[R].SPE 98896,2006.
|
[38] |
VIPULANANDAN C,MOHAMMED A.Smart cement modified with iron oxide nanoparticles to enhance the piezoresistive behavior and compressive strength for oil well applications[J].Smart Materials and Structures,2015,24(12):125-132.
|
[39] |
DE PAULA J N,CALIXTO J M,LADEIRA L O,et al.Mechanical and rheological behavior of oil-well cement slurries produced with clinker containing carbon nanotubes[J].Journal of Petroleum Science and Engineering,2014,122:274-279.
|
[40] |
WANG Chengwen,CHEN Xin,WEI Xiaotong,et al.Can nanosilica sol prevent oil well cement from strength retrogression under high temperature?[J].Construction and Building Materials,2017,144:574-585.
|
[41] |
El-GAMAL S M A,HASHEM F S,AMIN M S.Influence of carbon nanotubes,nanosilica and nanometakaolin on some morphological-mechanical properties of oil well cement pastes subjected to elevated water curing temperature and regular room air curing temperature[J].Construction and Building Materials,2017,146:531-546.
|
[42] |
SUN Xiuxuan,WU Qinglin,ZHANG Jinlong,et al.Rheology,curing temperature and mechanical performance of oil well cement:combined effect of cellulose nanofibers and graphene nano-platelets[J].Materials Design,2017,114:92-101.
|
[43] |
路飞飞,李斐,田娜娟,等.复合加砂抗高温防衰退水泥浆体系[J].钻井液与完井液,2017,34(4):85-89. LU Feifei.LI Fei,TIAN Najuan,et al.High termperatare anti stength retrogression cement slurry with compoumded silica powder[J].Drilling Fluid Completion Fluid,2017,34(4):85-89.
|
1. |
高元,李小江,刘仍光. 超高温井固井水泥浆体系研究与应用. 钻探工程. 2025(01): 109-114 .
![]() | |
2. |
李小江,王越洋,肖京男,魏浩光,杨睿月. 硅酸盐水泥石超高温干热环境热损伤规律. 钻井液与完井液. 2025(02): 247-254 .
![]() | |
3. |
李盼盼,李明泽,徐萍,白永泰,吕宝玉,王璐. 石英砂细度和掺量对G级油井水泥浆体系性能的影响. 水泥. 2024(01): 14-17 .
![]() | |
4. |
肖京男,李小江,周仕明,魏浩光,杨红歧. 干热岩超高温防衰退水泥浆体系及应用. 钻井液与完井液. 2024(01): 92-97 .
![]() | |
5. |
邱康,崔强,熊振宇,王颖,范鸿飞. 莺琼盆地高温高含CO_2环境水泥石腐蚀规律及机理研究. 海洋石油. 2024(02): 80-83 .
![]() | |
6. |
赵峰,曾雪玲,龙丹,古安林,张凌志,王佳,魏雪琦. 锆英石掺量对加砂油井水泥高温性能的影响研究. 水泥. 2024(07): 13-18 .
![]() | |
7. |
徐大伟,汪晓静,徐春虎,魏浩光,常连玉. 且深1井盐层尾管超高温高密度固井水泥浆技术. 钻井液与完井液. 2024(05): 622-629 .
![]() | |
8. |
赵琥,马春旭,宋维凯,田野,邹亦玮,孙超. 空心微珠低密度水泥浆在高温下的水化特性. 钻井液与完井液. 2024(05): 654-660 .
![]() | |
9. |
袁彬,赵清立,徐璧华,冯青豪,杨川. 南海180℃超高温CO_2环境下水泥石强度衰退机理. 材料导报. 2024(S2): 170-174 .
![]() | |
10. |
赵昆鹏,王涛,郭春,罗阳利,韦庭丛,梅开元,张春梅,赵峰,程小伟. 高温下赤泥与硅粉协同强化固井水泥石力学性能. 中国粉体技术. 2023(02): 74-80 .
![]() | |
11. |
徐小峰,宋巍,杨燕,李祥银,周岩,冯福平,韩旭,刘圣源. 页岩储层水平井固井水泥浆体系应用研究进展. 科学技术与工程. 2023(17): 7161-7173 .
![]() | |
12. |
党冬红,刘宁泽,王丹,梅开元,程小伟,孙兴嘉. 干热岩工况下水泥高温劣化性能的调控措施. 钻井液与完井液. 2023(03): 368-375 .
![]() | |
13. |
赵峰,曾雪玲,龙丹,古安林,喻庆华. 超高温固井水泥添加剂研选及工程性能评价. 钻采工艺. 2023(04): 131-136 .
![]() | |
14. |
杨雨,汪启龙,杨东,瞿勇,张浩,王凯鹏. 导热填料对地热井固井材料性能及结构的影响. 钻采工艺. 2022(01): 59-64 .
![]() | |
15. |
何立成. 胜利油田沙河街组页岩油水平井固井技术. 石油钻探技术. 2022(02): 45-50 .
![]() | |
16. |
侯海欧. 稠油热采井固井低密度水泥浆体系研究与应用. 中国石油和化工标准与质量. 2022(07): 111-113 .
![]() | |
17. |
周崇峰,费中明,李德伟,赵江波,蒋世伟,刘慧婷,徐明. 一种新型超高温固井水泥石抗强度衰退材料. 钻井液与完井液. 2022(01): 71-75 .
![]() | |
18. |
郤一臻,赵福金,荆京,祁国华,张勃. 山西干热岩GR1井高温固井技术研究与实践. 钻探工程. 2022(06): 42-47 .
![]() | |
19. |
杨仲涵,罗鸣,陈江华,许发宾,徐靖. 莺歌海盆地超高温高压井挤水泥承压堵漏技术. 石油钻探技术. 2020(03): 47-51 .
![]() | |
20. |
李全双,王治国,邹书强. 适用于干热岩固井抗高温高强度水泥浆体系研究. 中国石油和化工标准与质量. 2020(10): 164-167+169 .
![]() | |
21. |
张华,靳建洲,刘明涛,肖云峰,张晓兵,郭锦棠,张同颖. 稠油热采井抗350℃高温硅酸盐基水泥浆. 钻井液与完井液. 2020(03): 363-366 .
![]() | |
22. |
耿晨梓,姚晓,代丹,黎学年,姜涛,闫联国,吴学超. SiO_2晶态物性对高温水泥石力学性能的影响. 钻井液与完井液. 2020(06): 777-783 .
![]() | |
23. |
于永金,丁志伟,张弛,张华,郭锦棠. 抗循环温度210℃超高温固井水泥浆. 钻井液与完井液. 2019(03): 349-354 .
![]() | |
24. |
马志亮,郝红永,谢志涛,翟晓鹏,张瀚之. 微硅砂含量对热采井固井水泥强度影响研究. 当代化工研究. 2019(09): 72-74 .
![]() |