WANG Qinghui, ZHU Ming, FENG Jin, GUAN Yao, HOU Boheng. A Method for Predicting Productivity of Sandstone Reservoirs Based on Permeability Synthesis Technology[J]. Petroleum Drilling Techniques, 2021, 49(6): 105-112. DOI: 10.11911/syztjs.2021122
Citation: WANG Qinghui, ZHU Ming, FENG Jin, GUAN Yao, HOU Boheng. A Method for Predicting Productivity of Sandstone Reservoirs Based on Permeability Synthesis Technology[J]. Petroleum Drilling Techniques, 2021, 49(6): 105-112. DOI: 10.11911/syztjs.2021122

A Method for Predicting Productivity of Sandstone Reservoirs Based on Permeability Synthesis Technology

More Information
  • Received Date: December 28, 2020
  • Revised Date: August 21, 2021
  • Available Online: September 13, 2021
  • Using conventional logging data to accurately calculate the permeability of drill-stem test (DST) can greatly improve the accuracy of productivity predictions of offshore heterogeneous sandstone reservoirs. Based on this, the influence of sedimentary diagenesis and pore structure of Huizhou Sag on reservoir permeability were comprehensively considered from macroscopic and microscopic perspectives, respectively. In this work, a logging interpretation model of absolute permeability was built for different reservoir types. Forward analysis results show that reservoirs with different permeability contrast in perforated intervals have significantly different contributions to productivity.The synthetic logging permeability was calculated by weighted summation of permeability at different levels of the reservoir, and the weight coefficient was constrained to highlight the contribution of favorable reservoirs to productivity. An iterative analysis was performed with a differential evolution algorithm to yield the optimal solution of the equation. This method has been applied in 72 oil layers in Huizhou Sag for productivity prediction. The productivity from 48 layers was found greater than 100 m3/d, and the proportion of layers whose relative prediction errors within 30% was 90%. In addition, 24 layers had the productivity of 10–100 m3/d, among which the layers whose relative error was less than 50% accounted for 79% of the oil layers. This study indicates that the productivity prediction method based on permeability synthesis technology can guide the decision-making of offshore field tests and operations to reduce the exploration cost.
  • [1]
    刘彦成,罗宪波,康凯,等. 陆相多层砂岩油藏渗透率表征与定向井初期产能预测:以蓬莱19-3油田为例[J]. 石油勘探与开发,2017,44(1):97–103. doi: 10.1016/S1876-3804(17)30012-5

    LIU Yancheng, LUO Xianbo, KANG Kai, et al. Permeability characterization and directional wells initial productivity prediction in the continental multilayer sandstone reservoirs: a case from Penglai 19-3 Oil Field, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2017, 44(1): 97–103. doi: 10.1016/S1876-3804(17)30012-5
    [2]
    田亚鹏,鞠斌山,胡杰. 考虑蒸汽超覆的稠油蒸汽吞吐产能预测模型[J]. 石油钻探技术,2018,46(1):100–116.

    TIAN Yapeng, JU Binshan, HU Jie. A productivity prediction model for heavy oil steam huff and puff considering steam override[J]. Petroleum Drilling Techniques, 2018, 46(1): 100–116.
    [3]
    吴春新,刘学,刘英宪,等. 黄河口凹陷比采油指数预测方法及应用[J]. 断块油气田,2018,25(2):218–221.

    WU Chunxin, LIU Xue, LIU Yingxian, et al. Method of specific productivity index prediction of Huanghekou Sag and its application[J]. Fault-Block Oil & Gas Field, 2018, 25(2): 218–221.
    [4]
    时新磊,崔云江,许万坤,等. 基于随钻测压流度的地层渗透率评价方法及产能预测[J]. 石油勘探与开发,2020,47(1):140–147.

    SHI Xinlei, CUI Yunjiang, XU Wankun, et al. Formation permeability evaluation and productivity prediction based on mobility from pressure measurement while drilling[J]. Petroleum Exploration and Development, 2020, 47(1): 140–147.
    [5]
    谭忠健,胡云,张国强,等. 渤中19-6构造复杂储层流体评价及产能预测[J]. 石油钻采工艺,2018,40(6):764–774.

    TAN Zhongjian, HU Yun, ZHANG Guoqiang, et al. Fluid evaluation and productivity prediction on complex reservoirs in Bozhong 19-6 Structure[J]. Oil Drilling & Production Technology, 2018, 40(6): 764–774.
    [6]
    蒋兴才. 辽河葵东地区低电阻率油层产能影响因素分析及预测[J]. 特种油气藏,2019,26(4):70–75. doi: 10.3969/j.issn.1006-6535.2019.04.012

    JIANG Xingcai. Low-resistivity reservoir productivity analysis and forecast in Kuidong of Liaohe[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 70–75. doi: 10.3969/j.issn.1006-6535.2019.04.012
    [7]
    张龙海,刘国强,周灿灿,等. 基于阵列感应测井资料的油气层产能预测[J]. 石油勘探与开发,2005,32(3):84–87. doi: 10.3321/j.issn:1000-0747.2005.03.021

    ZHANG Longhai, LIU Guoqiang, ZHOU Cancan, et al. Reservoir productivity prediction by array induction logging data[J]. Petroleum Exploration and Development, 2005, 32(3): 84–87. doi: 10.3321/j.issn:1000-0747.2005.03.021
    [8]
    张利军,田冀,朱国金. 海上断块油田定向井初期产能评价方法分析[J]. 石油钻探技术,2015,43(1):111–116.

    ZHANG Lijun, TIAN Ji, ZHU Guojin. Evaluation methods for initial productivity of directional wells in offshore fault block oilfields[J]. Petroleum Drilling Techniques, 2015, 43(1): 111–116.
    [9]
    谭成仟,马娜蕊,苏超. 储层油气产能的预测模型和方法[J]. 地球科学与环境学报,2004,26(2):42–46. doi: 10.3969/j.issn.1672-6561.2004.02.010

    TAN Chenqian, MA Narui, SU Chao. Model and method for oil and gas productivity prediction of reservoir[J]. Journal of Earth Sciences and Environment, 2004, 26(2): 42–46. doi: 10.3969/j.issn.1672-6561.2004.02.010
    [10]
    马文礼,李治平,孙玉平,等. 基于机器学习的页岩气产能非确定性预测方法研究[J]. 特种油气藏,2019,26(2):101–105. doi: 10.3969/j.issn.1006-6535.2019.02.018

    MA Wenli, LI Zhiping, SUN Yuping, et al. Non-deterministic shale gas productivity forecast based on machine learning[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 101–105. doi: 10.3969/j.issn.1006-6535.2019.02.018
    [11]
    安小平,李相方,程时清,等. 不同方法获取渗透率的对比分析[J]. 油气井测试,2005,14(5):14–17. doi: 10.3969/j.issn.1004-4388.2005.05.006

    AN Xiaoping, LI Xiangfang, CHENG Shiqing, et al. Comparative analysis for permeability acquired from different methods[J]. Well Testing, 2005, 14(5): 14–17. doi: 10.3969/j.issn.1004-4388.2005.05.006
    [12]
    陈长民, 施和生, 许仕策, 等. 珠江口盆地(东部)第三系油气藏形成条件[M]. 北京: 科学出版社, 2003: 147-153.

    CHEN Changmin, SHI Hesheng, XU Shice, et al. The conditions of hydrocarbon accumulation of the tertiary petroleum system in the Pearl River Mouth Basin[M]. Beijing: Science Press, 2003: 147-153.
    [13]
    张振城. 储层损害比与产能预测[D]. 北京: 中国石油大学(北京), 2006.

    ZHANG Zhencheng. Formation damage and prediction of productivity[D]. Beijing: China University of Petroleum(Beijing), 2006.
    [14]
    王清辉, 冯进, 管耀, 等. 基于动态资料的低孔低渗砂岩储层渗透率测井评价方法: 以陆丰凹陷古近系为例[J]. 石油学报, 2019, 40(增刊1): 206-216.

    WANG Qinghui, FENG Jin, GUAN Yao, et al. Permeability logging evaluation method of low-porosity low-permeability sandstone reservoirs based on dynamic data: a case study of Paleogene Strata in Lufeng Sag[J]. Acta Petrolei Sinica, 2019, 40(supplement 1): 206-216.
    [15]
    熊万林,朱俊章,施洋,等. 珠江口盆地珠一坳陷原油密度分布及其成因[J]. 海洋地质前沿,2019,35(1):43–52.

    XIONG Wanlin, ZHU Junzhang, SHI Yang, et al. Density distribution of crude oil in the Zhuyi Depression of Pearl River Mouth Basin and control factors[J]. Marine Geology Frontiers, 2019, 35(1): 43–52.
    [16]
    石玉江,张海涛,侯雨庭,等. 基于岩石物理相分类的测井储层参数精细解释建模[J]. 测井技术,2005,29(4):328–332. doi: 10.3969/j.issn.1004-1338.2005.04.014

    SHI Yujiang, ZHANG Haitao, HOU Yuting, et al. The fine logging interpretation method based on petrophysical faces[J]. Well Logging Technology, 2005, 29(4): 328–332. doi: 10.3969/j.issn.1004-1338.2005.04.014
    [17]
    孙利国, 王玉梅, 何石. 利用平面径向流公式预测油层自然产能的方法[J]. 测井技术, 2000, 24(增刊1): 527–530

    SUN Liguo, WANG Yumei, HE Shi. A method to predict natural productivity in oil zones with the plan radial flow formula[J]. Well Logging Technology, 2000, 24(supplement 1): 527–530.
  • Cited by

    Periodical cited type(10)

    1. 姚梦麟,陶云贺,贺洪举,侯克均,刘海军,熊宇,张冲. 致密砂岩碎屑颗粒粒度定量表征及对产能的指示意义. 地质科技通报. 2025(02): 214-223 .
    2. 原建伟,刘美佳,李超,吴春新,马栋. 窄河道油藏水平井边界校正系数研究. 石油钻探技术. 2023(01): 86-90 . 本站查看
    3. 唐晓敏,殷雪松,吕亚娟,宋延杰,陈学洋,易俊. 基于孔隙结构储层分类的中低孔特低渗储层渗透率确定——以B区块S油层为例. 地球物理学进展. 2023(01): 271-284 .
    4. 苏静,杨璐,邵广辉,林茂山,张艳丽,胡旋,董旭龙. 玛湖凹陷砂砾岩储层分类与产能预测方法研究. 长江大学学报(自然科学版). 2023(06): 30-40 .
    5. 魏锋,陈现,王迪. 东海X气田基于测井参数的渗透率及产能预测方法研究. 海洋石油. 2023(04): 83-86+95 .
    6. 殷洪川,胥良君,吕泽宇,庞进,唐雯,陈渝页. 页岩气井临界出砂产量预测方法. 特种油气藏. 2023(06): 135-140 .
    7. 刘君毅,冯进,管耀,肖张波,王清辉,刘伟男. 基于改进电成像孔隙度谱的海洋低孔低渗砂岩渗透率评价方法. 测井技术. 2023(06): 746-752 .
    8. 王鑫,张旭阳,黄长兵,汪康,顾明翔,吴伟. 试油数据在估算致密砂砾岩储层渗透率中的应用. 断块油气田. 2022(02): 214-217+238 .
    9. 侯亚伟,刘超,徐中波,安玉华,李景玲. 多层水驱开发油田采收率快速预测方法. 石油钻探技术. 2022(05): 82-87 . 本站查看
    10. 刘慧,丁心鲁,张士杰,方云贵,郝晓波,郑玮鸽. 地下储气库注气过程一体化压力及地层参数计算方法. 石油钻探技术. 2022(06): 64-71 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (533) PDF downloads (61) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return