SONG Xianzhi, YAO Xuezhe, XU Zhengming, et al. Research on the influence mechanism of heat-insulating coating parameters in temperature-controlled drilling of ultra-deep well [J]. Petroleum Drilling Techniques,2024, 52(2):126-135. DOI: 10.11911/syztjs.2024048
Citation: SONG Xianzhi, YAO Xuezhe, XU Zhengming, et al. Research on the influence mechanism of heat-insulating coating parameters in temperature-controlled drilling of ultra-deep well [J]. Petroleum Drilling Techniques,2024, 52(2):126-135. DOI: 10.11911/syztjs.2024048

Research on the Influence Mechanism of Heat-Insulating Coating Parameters in Temperature-Controlled Drilling of Ultra-Deep Well

More Information
  • Received Date: February 20, 2024
  • Revised Date: March 06, 2024
  • Available Online: April 07, 2024
  • To reveal the influence of the heat-insulating coating on the wellbore temperature field of ultra-deep wells, the comprehensive heat transfer coefficient of the drill pipe was calculated in the form of heat transfer resistance according to the thermal conductivity characteristics of the heat-insulating coating and the drill pipe. A transient heat transfer model of the wellbore-formation of the ultra-deep well considering the heat-insulating coating inside the drill pipe was developed. The model was discretized by the finite difference method and solved iteratively by the Gauss-Seidel algorithm. The accuracy of the model was validated through theoretical analysis and field data. The results show that the thermal conductivity coefficient of the heat-insulating coating inside the drill pipe significantly affects the bottom hole circulating temperature. A decrease in conductivity coefficient leads to a rapid drop in wellbore annular temperature and an increase in exit temperature. The thickness and length of the heat-insulating coating also greatly impact wellbore temperature, with greater thickness resulting in a lower bottom hole circulating temperature. These findings offer essential theoretical support for wellbore temperature control and optimization of heat-insulating drill pipe parameters during ultra-deep well drilling.

  • [1]
    匡立春,支东明,王小军,等. 新疆地区含油气盆地深层—超深层成藏组合与勘探方向[J]. 中国石油勘探,2021,26(4):1–16.

    KUANG Lichun, ZHI Dongming, WANG Xiaojun, et al. Oil and gas accumulation assemblages in deep to ultra-deep formations and exploration targets of petroliferous basins in Xinjiang Region[J]. China Petroleum Exploration, 2021, 26(4): 1–16.
    [2]
    王志刚,王稳石,张立烨,等. 万米科学超深井钻完井现状与展望[J]. 科技导报,2022,40(13):27–35.

    WANG Zhigang, WANG Wenshi, ZHANG Liye, et al. Present situation and prospect of drilling and completion of 10 000 meter scientific ultra deep wells[J]. Science & Technology Review, 2022, 40(13): 27–35.
    [3]
    李涛,苏强,杨哲,等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术,2023,51(2):7–15.

    LI Tao, SU Qiang, YANG Zhe, et al. Current practices and research directions for drilling and completion technologies for ultra-deep wells in Western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7–15.
    [4]
    汪海阁,黄洪春,纪国栋,等. 中国石油深井、超深井和水平井钻完井技术进展与挑战[J]. 中国石油勘探,2023,28(3):1–11.

    WANG Haige, HUANG Hongchun, JI Guodong, et al. Progress and challenges of drilling and completion technologies for deep, ultra-deep and horizontal wells of CNPC[J]. China Petroleum Exploration, 2023, 28(3): 1–11.
    [5]
    苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527–542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527–542.
    [6]
    邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望[J]. 天然气工业,2022,42(12):82–94.

    DENG Hu, JIA Lichun. Key technologies for drilling deep and ultra-deep wells in the Sichuan Basin: current status, challenges and prospects[J]. Natural Gas Industry, 2022, 42(12): 82–94.
    [7]
    汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163–177.

    WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8): 163–177.
    [8]
    KHALED M S, WANG Ningyu, ASHOK P, et al. Strategies for prevention of downhole tool failure caused by high bottomhole temperature in geothermal and high-pressure/high-temperature oil and gas wells[J]. SPE Drilling & Completion, 2023, 38(2): 243–260.
    [9]
    SPINDLER R. Analytical models for wellbore-temperature distribution[J]. SPE Journal, 2011, 16(1): 125–133. doi: 10.2118/140135-PA
    [10]
    HASAN A R, KABIR C S. Wellbore heat-transfer modeling and applications[J]. Journal of Petroleum Science and Engineering, 2012, 86/87: 127–136. doi: 10.1016/j.petrol.2012.03.021
    [11]
    AL SAEDI A Q, FLORI R E, KABIR C S. Influence of frictional or rotational kinetic energy on wellbore-fluid/temperature profiles during drilling operations[J]. SPE Drilling & Completion, 2019, 34(2): 128–142.
    [12]
    WU Xingru, XU Boyue, LING Kegang. A semi-analytical solution to the transient temperature behavior along the vertical wellbore after well shut-in[J]. Journal of Petroleum Science and Engineering, 2015, 131: 122–130. doi: 10.1016/j.petrol.2015.04.034
    [13]
    XU Boyue, WU Xingru, GAO Yonghui, et al. A semi-analytical solution to the transient temperature behavior along the wellbore and its applications in production management[R]. SPE 170631, 2014.
    [14]
    PENG Yu, ZHAO Jinzhou, SEPEHRNOORI K, et al. Study of the heat transfer in the wellbore during acid/hydraulic fracturing using a semianalytical transient model[J]. SPE Journal, 2019, 24(2): 877–890. doi: 10.2118/194206-PA
    [15]
    赵金洲,彭瑀,李勇明,等. 基于双层非稳态导热过程的井筒温度场半解析模型[J]. 天然气工业,2016,36(1):68–75.

    ZHAO Jinzhou, PENG Yu, LI Yongming, et al. A semi-analytic model of wellbore temperature field based on double-layer unsteady heat conducting process[J]. Natural Gas Industry, 2016, 36(1): 68–75.
    [16]
    YANG Mou, TANG Daqian, CHEN Yuanhang, et al. Determining initial formation temperature considering radial temperature gradient and axial thermal conduction of the wellbore fluid[J]. Applied Thermal Engineering, 2019, 147: 876–885. doi: 10.1016/j.applthermaleng.2018.11.006
    [17]
    MAO Liangjie, WEI Changjiang, JIA Hai, et al. Prediction model of drilling wellbore temperature considering bit heat generation and variation of mud thermophysical parameters[J]. Energy, 2023, 284: 129341. doi: 10.1016/j.energy.2023.129341
    [18]
    张锐尧,李军,柳贡慧,等. 深水钻井多压力系统条件下的井筒温度场研究[J]. 石油机械,2021,49(7):77–85.

    ZHANG Ruiyao, LI Jun, LIU Gonghui, et al. Research on the wellbore temperature field under the multiple pressure system during deep water drilling[J]. China Petroleum Machinery, 2021, 49(7): 77–85.
    [19]
    LI Gao, YANG Mou, MENG Yingfeng, et al. Transient heat transfer models of wellbore and formation systems during the drilling process under well kick conditions in the bottom-hole[J]. Applied Thermal Engineering, 2016, 93: 339–347. doi: 10.1016/j.applthermaleng.2015.09.110
    [20]
    赵向阳,赵聪,王鹏,等. 超深井井筒温度数值模型与解析模型计算精度对比研究[J]. 石油钻探技术,2022,50(4):69–75.

    ZHAO Xiangyang, ZHAO Cong, WANG Peng, et al. A comparative study on the calculation accuracy of numerical and analytical models for wellbore temperature in ultra-deep wells[J]. Petroleum Drilling Techniques, 2022, 50(4): 69–75.
    [21]
    田得强,李中,许亮斌,等. 深水高温高压气井钻井循环温度压力耦合计算与分析[J]. 中国海上油气,2022,34(5):149–157.

    TIAN Deqiang, LI Zhong, XU Liangbin, et al. Coupling calculation and analysis of circulating temperature pressure distribution in deepwater HTHP gas well drilling[J]. China Offshore Oil and Gas, 2022, 34(5): 149–157.
    [22]
    CHEN Xin, HE Miao, XU Mingbiao, et al. Fully transient coupled prediction model of wellbore temperature and pressure for multi-phase flow during underbalanced drilling[J]. Geoenergy Science and Engineering, 2023, 223: 211540. doi: 10.1016/j.geoen.2023.211540
    [23]
    XU Zhengming, CHEN Xuejiao, SONG Xianzhi, et al. Gas-kick simulation in oil-based drilling fluids with nonequilibrium gas-dissolution and -evolution effects[J]. SPE Journal, 2021, 26(5): 2549–2569. doi: 10.2118/206717-PA
    [24]
    XU Zhengming, WU Kan, SONG Xianzhi, et al. A unified model to predict flowing pressure and temperature distributions in horizontal wellbores for different energized fracturing fluids[J]. SPE Journal, 2019, 24(2): 834–856.
    [25]
    王雪瑞,孙宝江,王志远,等. 考虑温度压力耦合效应的控压固井全过程水力参数计算方法[J]. 中国石油大学学报(自然科学版),2022,46(2):103–112.

    WANG Xuerui, SUN Baojiang, WANG Zhiyuan, et al. Calculation method of hydraulic parameters in whole cementing process considering coupling effect of temperature and pressure[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2): 103–112.
    [26]
    王金磊,江波,黄范勇. 井筒降温技术研究综述[J]. 新疆石油科技,2015,25(2):9–11.

    WANG Jinlei, JIANG Bo, HUANG Fanyong. A review of wellbore cooling technology[J]. Xinjiang Petroleum Science & Technology, 2015, 25(2): 9–11.
    [27]
    吴鹏程,钟成旭,严俊涛,等. 深层页岩气水平井钻进中井筒–地层瞬态传热模型[J]. 石油钻采工艺,2022,44(1):1–8.

    WU Pengcheng, ZHONG Chengxu, YAN Juntao, et al. Well-formation transient heat transfer model during drilling of deep shale gas horizontal wells[J]. Oil Drilling & Production Technology, 2022, 44(1): 1–8.
    [28]
    梁晓阳,赵聪,赵向阳,等. 基于热管技术的钻井液地面降温系统研制[J]. 石油机械,2023,51(3):24–32.

    LIANG Xiaoyang, ZHAO Cong, ZHAO Xiangyang, et al. Development of the drilling fluid surface cooling system based on heat pipes[J]. China Petroleum Machinery, 2023, 51(3): 24–32.
    [29]
    李涛,杨哲,徐卫强,等. 泸州区块深层页岩气水平井优快钻井技术[J]. 石油钻探技术,2023,51(1):16–21.

    LI Tao, YANG Zhe, XU Weiqiang, et al. Optimized and fast drilling technology for deep shale gas horizontal wells in Luzhou Block[J]. Petroleum Drilling Techniques, 2023, 51(1): 16–21.
    [30]
    贾利春,李枝林,张继川,等. 川南海相深层页岩气水平井钻井关键技术与实践[J]. 石油钻采工艺,2022,44(2):145–152.

    JIA Lichun, LI Zhilin, ZHANG Jichuan, et al. Key technology and practice of horizontal drilling for marine deep shale gas in southern Sichuan Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 145–152.
    [31]
    王建龙,于志强,苑卓,等. 四川盆地泸州区块深层页岩气水平井钻井关键技术[J]. 石油钻探技术,2021,49(6):17–22.

    WANG Jianlong, YU Zhiqiang, YUAN Zhuo, et al. Key technologies for deep shale gas horizontal well drilling in Luzhou Block of Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(6): 17–22.
    [32]
    刘昌弟,孙元伟,程怀标. 南海琼东南盆地高温低压大位移井钻井技术[J]. 特种油气藏,2013,20(6):80–83.

    LIU Changdi, SUN Yuanwei, CHENG Huaibiao. High temperature, low pressure and extended reach well drilling in the southeast Hainan Basin[J]. Special Oil & Gas Reservoirs, 2013, 20(6): 80–83.
    [33]
    刘均一,陈二丁,李光泉,等. 基于相变蓄热原理的深井钻井液降温实验研究[J]. 石油钻探技术,2021,49(1):53–58.

    LIU Junyi, CHEN Erding, LI Guangquan, et al. Experimental study of drilling fluid cooling in deep wells based on phase change heat storage[J]. Petroleum Drilling Techniques, 2021, 49(1): 53–58.
    [34]
    肖雨阳. 高含水气井井下节流工艺参数优化[D]. 荆州:长江大学,2023.

    XIAO Yuyang. Optimization of downhole throttling process parameters for gas wells with high water content[D]. Jingzhou: Yangtze University, 2023.
    [35]
    闫新. 高含水气井井下节流特性研究[D]. 西安:西安石油大学,2021.

    YAN Xin. Study on downhole throttling characteristics of high water-cut gas wells[D]. Xi’an: Xi’an Shiyou University, 2021.
    [36]
    余朝毅. 井下节流机理研究及现场应用[D]. 成都:西南石油大学,2004.

    YU Zhaoyi. Research on downhole throttling mechanism and field application[D]. Chengdu: Southwest Petroleum University, 2004.
    [37]
    SOPRANI S, ENGELBRECHT K, NØRGAARD A J. Active cooling and thermal management of a downhole tool electronics section[C]//Proceedings of the 24th IIR International Congress of Refrigeration. Paris: International Institute of Refrigeration, 2015: 85.
    [38]
    CHIN Y D, KVAERNER A. Cool-down-temperature overshoot phenomenon in subsea flowline and riser systems[R]. OTC 15253, 2003.
    [39]
    BONNISSEL M, OZOUX V, COUPRIE S, et al. Gel based materials for high insulation and long cool down time in deep water[R]. OTC 16504, 2004.
    [40]
    JANOFF D, MCKIE N, DAVALATH J. Prediction of cool down times and designing of insulation for subsea production equip-ment[R]. OTC 16507, 2004.
    [41]
    DAVALATH J, STEVENS K. Cool-down thermal performance of subsea systems based on Gulf of Mexico field experience[R]. OTC 17972, 2006.
    [42]
    刘珂,高文凯,洪迪峰,等. 随钻仪器井下降温系统阻热性能研究[J]. 石油机械,2020,48(8):23–30.

    LIU Ke, GAO Wenkai, HONG Difeng, et al. Study on thermal resistance performance of downhole cooling system of instrument while drilling[J]. China Petroleum Machinery, 2020, 48(8): 23–30.
    [43]
    刘珂,苏义脑,高文凯,等. 随钻仪器井下降温系统冷却效果数值研究[J]. 石油机械,2022,50(7):18–25.

    LIU Ke, SU Yinao, GAO Wenkai, et al. Numerical study on cooling effect of downhole cooling system of instrument while drilling[J]. China Petroleum Machinery, 2022, 50(7): 18–25.
    [44]
    刘珂,高文凯,窦修荣,等. 随钻仪器井下降温系统传热特性研究[J]. 石油机械,2022,50(2):23–32.

    LIU Ke, GAO Wenkai, DOU Xiurong, et al. Heat transfer characteristic study on downhole cooling system of drilling instrument[J]. China Petroleum Machinery, 2022, 50(2): 23–32.
    [45]
    杨世铭,陶文铨. 传热学[M]. 4版. 北京:高等教育出版社,2006.

    YANG Shiming, TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006.
  • Related Articles

    [1]ZHANG Wenping, XU Zhengming, LYU Zehao, ZHAO Wen. Research on a Transient Flow Heat Transfer Model of Gas-Liquid-Solid Three-Phase Flow for Unbalanced Drilling in Deep Shale Wells[J]. Petroleum Drilling Techniques, 2023, 51(5): 96-105. DOI: 10.11911/syztjs.2023089
    [2]YUAN Jianwei, LIU Meijia, LI Chao, WU Chunxin, MA Dong. Research on Boundary Correction Coefficient of Horizontal Wells in Narrow Channel Reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(1): 86-90. DOI: 10.11911/syztjs.2022056
    [3]YU Chao, ZHANG Yiqun, SONG Xianzhi, WANG Gaosheng, HUANG Haochen. Comprehensive Evaluation and Optimization of Circulating Working Fluids inthe Coaxial Borehole Heat Exchanger Closed-Loop Geothermal System[J]. Petroleum Drilling Techniques, 2021, 49(5): 101-107. DOI: 10.11911/syztjs.2021066
    [4]SUN Fengrui, YAO Yuedong, LI Xiangfang, SUN Zheng, CHEN Gang. Characteristics of Heat Transfer in Offshore Wellbores with Non-Condensing Gases Flow Coupled with Overheated Steam[J]. Petroleum Drilling Techniques, 2017, 45(5): 92-97. DOI: 10.11911/syztjs.201705016
    [5]SHU Zhiqiang, OUYANG Zhiying, GONG Danmei. Study on Strength and Plasticity of High Steel Grade Drill Pipe[J]. Petroleum Drilling Techniques, 2017, 45(5): 53-59. DOI: 10.11911/syztjs.201705010
    [6]Lin Yuanhua, Li Guanghui, Hu Qiang, Liu Wanying. Experimental Study on Drill Pipe Stress-Fatigue Life Curve[J]. Petroleum Drilling Techniques, 2015, 43(4): 124-128. DOI: 10.11911/syztjs.201504022
    [7]Li Mengbo, Liu Gonghui, Li Jun, Wei Xiaoqiang, Gao Haijun. Research on Wellbore Temperature Field with Helical Flow of Non-Newtonian Fluids in Drilling Operation[J]. Petroleum Drilling Techniques, 2014, 42(5): 74-79. DOI: 10.11911/syztjs.201405013
    [8]Ding Kuang, Zhu Hongwu, Hao Jiansheng, Zhang Jianhua. Numerical Study on Heat Transfer and Thermal Insulation of Subsea Christmas Tree Connectors[J]. Petroleum Drilling Techniques, 2012, 40(3): 121-125. DOI: 10.3969/j.issn.1001-0890.2012.03.025
    [9]Xie Hui, Jiang Zhengqing, Wang Xinfeng, Cai Wenjun. A Theory Analysis and Experimental Study on Acoustic Transmission Properties in Drill String[J]. Petroleum Drilling Techniques, 2012, 40(3): 67-72. DOI: 10.3969/j.issn.1001-0890.2012.03.014
    [10]Research on Wellbore Gravity Heat Pipe Heating Technology in Thermal Recovery of Heavy Oil[J]. Petroleum Drilling Techniques, 2011, 39(2): 108-111. DOI: 10.3969/j.issn.1001-0890.2011.02.022
  • Cited by

    Periodical cited type(28)

    1. 李阳,王延光,刘浩杰,陈雨茂,薛兆杰. 中国石化油藏地球物理二十年发展与思考. 石油物探. 2024(01): 1-11 .
    2. 彭岩,王一博,雷征东,王笑涵,汪大伟,张广清,周大伟. 致密油藏驱渗结合采油可行性研究. 科学技术与工程. 2024(04): 1448-1458 .
    3. 陈鑫. 致密油整体缝网压裂技术在杏树岗油田杏69-1井区扶余油层的应用实践. 中外能源. 2024(04): 69-75 .
    4. 白斌,戴朝成,侯秀林,杨亮,王瑞,王岚,孟思炜,董若婧,刘羽汐. 松辽盆地白垩系青山口组页岩层系非均质地质特征与页岩油甜点评价. 石油与天然气地质. 2023(04): 846-856 .
    5. 张锦宏,周爱照,成海,毕研涛. 中国石化石油工程技术新进展与展望. 石油钻探技术. 2023(04): 149-158 . 本站查看
    6. 邹敏,夏东领,夏冬冬,庞雯. 致密砂岩储层非均质成因研究. 西南石油大学学报(自然科学版). 2022(01): 41-52 .
    7. 邸士莹,程时清,白文鹏,尚儒源,潘有军,史文洋. 裂缝性致密油藏注水吞吐转不稳定水驱开发模拟. 石油钻探技术. 2022(01): 89-96 . 本站查看
    8. 范家伟,袁野,李绍华,王彦秋,黄兰,尚钲凯,李君,陶正武. 塔里木盆地深层致密油藏地质工程一体化模拟技术. 断块油气田. 2022(02): 194-198 .
    9. 马克新. 复合压裂技术在大庆油田Ⅱ、Ⅲ类致密储层的应用. 大庆石油地质与开发. 2022(04): 161-167 .
    10. 黄越,金智荣. 花庄区块页岩油密切割体积压裂对策研究. 石油地质与工程. 2022(05): 96-100 .
    11. 吴飞鹏,范贤章,徐尔斯,杨涛,颜丙富,刘静. 压裂液高压渗滤对砂岩基质损伤演化的细观力学分析. 岩土力学. 2021(12): 3238-3248 .
    12. 覃建华,张景,蒋庆平,冯月丽,赵逸清,朱键,卢志远,伍顺伟. 玛湖砾岩致密油“甜点”分类评价及其工程应用. 中国石油勘探. 2020(02): 110-119 .
    13. 闫林,陈福利,王志平,阎逸群,曹瑾健,王坤琪. 我国页岩油有效开发面临的挑战及关键技术研究. 石油钻探技术. 2020(03): 63-69 . 本站查看
    14. 许锋,姚约东,吴承美,许章,张金风,赵国翔. 温度对吉木萨尔致密油藏渗吸效率的影响研究. 石油钻探技术. 2020(05): 100-104 . 本站查看
    15. 邸元,吴大卫,WU Yushu. 油藏渗流–应力耦合分析的FEM-FVM混合方法的改进. 岩石力学与工程学报. 2020(S1): 2645-2654 .
    16. 赵驰,吴欣梦. 探究侏罗系油藏开发中采用精细单砂体刻画技术的价值分析. 信息记录材料. 2019(01): 40-41 .
    17. 高锐. 大庆油田致密油藏开发钻井提速技术浅析. 石油工业技术监督. 2019(01): 54-57 .
    18. 邹敏,夏东领,庞雯,徐婷. 致密砂岩储层微观孔喉结构表征方法及其应用——以鄂尔多斯盆地红河地区长8层为例. 西安石油大学学报(自然科学版). 2019(02): 46-53 .
    19. 崔树建. 大庆油田齐家区块致密油水平井提速技术研究. 西部探矿工程. 2019(09): 56-57+61 .
    20. 夏东领,邹敏,庞雯,吴胜和. 鄂尔多斯盆地镇泾地区长8致密砂岩储层孔喉组合分类及其意义. 地质科技情报. 2018(04): 120-126 .
    21. 杜洪凌,许江文,李峋,陆军,章敬,彭永灿,陈进,王磊. 新疆油田致密砂砾岩油藏效益开发的发展与深化——地质工程一体化在玛湖地区的实践与思考. 中国石油勘探. 2018(02): 15-26 .
    22. 姜瑞忠,张春光,崔永正,张伟,张福蕾,沈泽阳. 考虑压敏的双重介质分形油藏非线性渗流模型. 断块油气田. 2018(05): 612-616 .
    23. 常雷. 长垣、齐家地区致密油水平井钻井提速配套技术. 石油地质与工程. 2017(06): 98-100+104+128-129 .
    24. 杨树坤,张博,赵广渊,李翔,郭宏峰. 致密油藏热水驱增油机理定性分析及定量评价. 石油钻采工艺. 2017(04): 399-404 .
    25. 何祖清,梁承春,彭汉修,朱明,何同. 鄂尔多斯盆地南部致密油藏水平井智能分采技术研究与试验. 石油钻探技术. 2017(03): 88-94 . 本站查看
    26. 吕栋梁,徐伟,唐海,唐瑞雪. 特低渗透油藏水平井井网极限注采井距的确定. 断块油气田. 2016(05): 634-637 .
    27. 刘伟,张晋言,张文姣,刘海河,吕增伟. 基于电成像测井资料的砂砾岩储层有效性分类评价方法. 石油钻探技术. 2016(04): 114-119 . 本站查看
    28. 李阳,薛兆杰. 中国石化油气田开发工程技术面临的挑战与发展方向. 石油钻探技术. 2016(01): 1-5 . 本站查看

    Other cited types(20)

Catalog

    Article Metrics

    Article views (331) PDF downloads (142) Cited by(48)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return