Li Mengbo, Liu Gonghui, Li Jun, Wei Xiaoqiang, Gao Haijun. Research on Wellbore Temperature Field with Helical Flow of Non-Newtonian Fluids in Drilling Operation[J]. Petroleum Drilling Techniques, 2014, 42(5): 74-79. DOI: 10.11911/syztjs.201405013
Citation: Li Mengbo, Liu Gonghui, Li Jun, Wei Xiaoqiang, Gao Haijun. Research on Wellbore Temperature Field with Helical Flow of Non-Newtonian Fluids in Drilling Operation[J]. Petroleum Drilling Techniques, 2014, 42(5): 74-79. DOI: 10.11911/syztjs.201405013

Research on Wellbore Temperature Field with Helical Flow of Non-Newtonian Fluids in Drilling Operation

More Information
  • Received Date: December 11, 2013
  • Revised Date: May 14, 2014
  • Understanding wellbore temperature and its changing regularity is very critical for drilling safely and efficiently.According to the first law of thermodynamics and heat transfer theory,a complete temperature field mathematical model for drilling circulation was established.The heat transfer mechanism in spiral flow of non-Newtonian fluid in wellbore and the effect of hydraulic energy and mechanical energy on wellbore temperature field were analyzed.A preliminary discussion was conducted regarding calculation of ECD under high temperature and high pressure and control over wellbore temperature.The model results matched well with field experimental data.Numerical simulation indicated bottomhole temperature increased by 4.5 ℃ at the depth of 2 000 m,and 7.8 ℃ at 5 000 m respectively when the rotary speed of drillstring rose from 0 r/min to 200 r/min.The bottomhole temperature increased exponentially with the increase of rotary speed,the drill string rotary speed had much higher effects on bottomhole temperature with the increase of well depth.This model can provide a theoretical reference for hydraulic design of drilling in HTHP formation and temperature control during field operations.
  • [1]
    Holmes C S,Swift S C.Calculation of circulating mud temperature[J].Journal of Petroleum Technology,1970,22(6):670-674.
    [2]
    Kabir C S,Hasan A R,Kouba G E,et al.Determining circulating fluid temperature in drilling,workover and well control operations[J].SPE Drilling Completion,1992,11(2):74-79.
    [3]
    何世明,何平,尹成,等.井下循环温度模型及其敏感性分析[J].西南石油学院学报,2002,24(1):57-60. He Shiming,He Ping,Yin Cheng,et al.A wellbore temperature model it’s parametric sensitivity analysis[J].Journal of Southwest Petroleum Institute,2002,24(1):57-60.
    [4]
    易灿,闫振来,郭磊.井下循环温度及其影响因素的数值模拟研究[J].石油钻探技术,2007,35(6):47-49. Yi Can,Yan Zhenlai,Guo Lei.Numerical simulation of circulating temperature and it’s impacting parameters[J].Petroleum Drilling Techniques,2007,35(6):47-49.
    [5]
    窦亮彬,李根生,沈忠厚,等.注CO2井筒温度压力预测模型及影响因素研究[J].石油钻探技术,2013,41(1):76-81. Dou Liangbin,Li Gensheng,Shen Zhonghou,et al.Wellbore pressure and temperature prediction model and its affecting factors for CO2 injection wells[J].Petroleum Drilling Techniques,2013,41(1):76-81.
    [6]
    Thompson M,Burgess T M.The prediction of interpretation of mud temperature while drilling[R].SPE 14180,1985.
    [7]
    Osisanya S O,Harris O O.Evaluation of equivalent circulating density of drilling fluids under high-pressure/high-temperature conditions[R].SPE 97018,2005.
    [8]
    Gonzalez M E,Bloys J B,Lofton J E,et al.Increasing effective fracture gradients by managing wellbore temperatures[R].IADC/SPE 87217,2004.
    [9]
    Iyoho A W,Rask J H,Wieseneck J B,et al.Comprehensive drilling model analyzes BHT parameters[R].SPE 124142,2009.
    [10]
    高德利.油气井管柱力学与工程[M].东营:中国石油大学出版社,2006:88-89. Gao Deli.Mechanics and engineering string of oil and gas wells[M].Dongying:China University of Petroleum Press,2006:88-89.
    [11]
    Ahmed R M,Enfis M S,Kheir H M E,et al.The effect of drillstring rotation on equivalent circulation density:modeling and analysis of field measurements[R].SPE 135587,2010.
    [12]
    Fénot M,Bertin Y,Dorignac E,et al.A review of heat transfer between concentric rotating cylinders with or without axial flow[J].International Journal of Thermal Sciences,2011,50(7):1138-1155.
    [13]
    崔海清,刘希圣.非牛顿流体偏心环形空间螺旋流的速度分布[J].石油学报,1996,17(2):76-83. Cui Haiqing,Liu Xisheng.Velocity distribution of helical flow of non-Newtonian fluid in eccentric annuli[J].Acta Petrolei Sinica,1996,17(2):76-83.
    [14]
    Gazley C.Heat transfer characteristics of the rotational and axial flow between concentric cylinders[J].Journal of Heat Transfer,1958,80(1):79-90.
    [15]
    Marshall D W,Bentsen R G.A computer model to determine the temperature distributions in a wellbore[J].Journal of Canadian Petroleum Technology,1982,21(1):63-75.
    [16]
    陶文铨.数值传热学[M].西安:西安交通大学出版社,1988:85. Tao Wenquan.Numerical heat transfer[M].Xi’an:Xi’an Jiaotong University Press,1988:85.
    [17]
    张涛,柳贡慧,李军,等.随钻压力测量系统的研制与现场试验[J].石油钻采工艺,2012,34(2):20-22. Zhang Tao,Liu Gonghui,Li Jun,et al.Pressure while drilling system development and field test[J].Oil Drilling Production Technology,2012,34(2):20-22.
    [18]
    罗宇维,朱江林,李东,等.温度和压力对井内流体密度的影响[J].石油钻探技术,2012,40(2):30-34. Luo Yuwei,Zhu Jianglin,Li Dong,et al.The impact of temperature pressure on borehole fluids density[J].Petroleum Drilling Techniques,2012,40(2):30-34.
  • Related Articles

    [1]LIU Jinlu, LI Jun, LIU Gonghui, LI Hui, YANG Hongwei. Prediction Model of Wellbore Temperature Field during Deepwater Cementing Circulation Stage[J]. Petroleum Drilling Techniques, 2024, 52(4): 66-74. DOI: 10.11911/syztjs.2024065
    [2]YU Yi, WANG Xuerui, KE Ke, WANG Di, YU Xin, GAO Yonghai. Prediction Model and Distribution Law Study of Temperature and Pressure of the Wellbore in drilling in Arctic Region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11-20. DOI: 10.11911/syztjs.2021047
    [3]ZHENG Chunfeng, WEI Chen, ZHANG Haitao, LI Ang, MENG Hongxia. A New Forecasting Model of a Wellbore Wax Deposition Profile in a Offshore Well[J]. Petroleum Drilling Techniques, 2017, 45(4): 103-109. DOI: 10.11911/syztjs.201704018
    [4]DENG Yong, CHEN Mian, JIN Yan, LU Yunhu, ZOU Daiwu. Prediction Model and Numerical Simulation for Rock Fissure Length under Impact Load[J]. Petroleum Drilling Techniques, 2016, 44(4): 41-46. DOI: 10.11911/syztjs.201604008
    [5]CEN Xueqi, WU Xiaodong, WANG Lei, ZHENG Lei, GE Lei. A New Model for Calculating the Ideal Beam Counterbalance Weight for a Pumping Unit[J]. Petroleum Drilling Techniques, 2016, 44(2): 82-86. DOI: 10.11911/syztjs.201602014
    [6]WENG Dingwei, FU Haifeng, LU Yongjun, ZHENG Lihui, MA Jianjun. A Model for Predicting the Volume of Stimulated Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(1): 95-100. DOI: 10.11911/syztjs.201601018
    [7]Li Yuwei, Ai Chi. Hydraulic Fracturing Fracture Initiation Model for a Vertical CBM Well[J]. Petroleum Drilling Techniques, 2015, 43(4): 83-90. DOI: 10.11911/syztjs.201504015
    [8]Li Daqi, Kang Yili, Liu Xiushan, Chen Zengwei, Si Na. Progress in Drilling Fluid Loss Dynamics Model for Fractured Formations[J]. Petroleum Drilling Techniques, 2013, 41(4): 42-47. DOI: 10.3969/j.issn.1001-0890.2013.04.010
    [9]He Baosheng, Liu Hualiang, Liu Gang, Yang Quanzhi, Geng Zhanli. Anti-Collision Prediction Model for Drill Bit Approaching Adjacent Well Based on Spherical Wave Propagation Theory[J]. Petroleum Drilling Techniques, 2013, 41(3): 62-66. DOI: 10.3969/j.issn.1001-0890.2013.03.012
    [10]Wu Shinan, Zhang Jinlong, Ding Shidong, Liu Jian. Revision of Mathematical Model of Foamed Cement Slurry Density under Down-Hole Conditions[J]. Petroleum Drilling Techniques, 2013, 41(2): 28-33. DOI: 10.3969/j.issn.1001-0890.2013.02.006
  • Cited by

    Periodical cited type(18)

    1. 刘涛,何淼,张亚,陈鑫,阚正玉,王世鸣. 小井眼超深井井筒温度预测模型及降温方法研究. 钻采工艺. 2024(03): 65-72 .
    2. 张政,赵豫,王国荣,钟林,王敬朋. 地热井钻井过程中漏失对井筒温度分布的影响. 科学技术与工程. 2024(23): 9819-9826 .
    3. 欧彪,董波,严焱诚,江波,肖东. 深层碳酸盐岩地层长水平段钻井井筒温度分布模型研究. 科学技术与工程. 2023(03): 1008-1016 .
    4. 王庆,张佳伟,孙铭浩,纪国栋,汪海阁,孙晓峰. 大庆油田古龙页岩岩屑在幂律流体中的沉降阻力系数研究. 石油钻探技术. 2023(02): 54-60 . 本站查看
    5. 柳鹤,于国伟,于琛,郑锋,陈文博,王超,郑双进. 基于地面降温的井下钻井液冷却技术. 钻井液与完井液. 2023(06): 756-764 .
    6. 张锐尧,李军,柳贡慧,杨宏伟,王江帅,文涛. 双梯度钻井关键工具及井筒压力动态变化规律. 石油机械. 2022(01): 1-9 .
    7. 刘奕杉,黄顺潇,袁光杰,唐洋. 煤炭地下气化高温井筒温度场研究. 煤炭转化. 2022(01): 58-64 .
    8. 张锐尧,李军,柳贡慧. 深水变梯度钻井井筒压力预测模型的研究. 石油科学通报. 2022(04): 564-575 .
    9. 张锐尧,蒋振新,李军,郭勇,柳贡慧. 多梯度钻井分离器冲蚀磨损分析及流场研究. 石油机械. 2021(01): 80-87 .
    10. 余意,王雪瑞,柯珂,王迪,于鑫,高永海. 极地钻井井筒温度压力预测模型及分布规律研究. 石油钻探技术. 2021(03): 11-20 . 本站查看
    11. 张锐尧,李军,柳贡慧,杨宏伟. 深水钻井多压力系统条件下的井筒温度场研究. 石油机械. 2021(07): 77-85 .
    12. 张锐尧,李军,柳贡慧,杨宏伟,王江帅,高热雨. 基于空心球滑移条件下的双梯度钻井井筒温压场的研究. 石油科学通报. 2021(03): 429-440 .
    13. 张锐尧,李军,柳贡慧,王鹏. 深水多梯度钻井空心球分离规律及其对井筒传热与传质的影响. 钻采工艺. 2021(05): 16-21 .
    14. 杨宏伟,李军,柳贡慧,高旭,王江帅,骆奎栋. 深水多梯度钻井井筒温度场. 中国石油大学学报(自然科学版). 2020(05): 62-69 .
    15. 朱广海,刘章聪,熊旭东,宋洵成,王军恒,翁博. 电加热稠油热采井筒温度场数值计算方法. 石油钻探技术. 2019(05): 110-115 . 本站查看
    16. 刘文成,赵丹汇,赵琥,郭朝红,姜玉雁,李志刚. 考虑钻具磨损内热源的深水钻井循环温度场研究. 中国海上油气. 2018(01): 136-141 .
    17. 李梦博,许亮斌,罗洪斌,耿亚楠,李根生. 深水高温钻井井筒循环温度分布与控制方法研究. 中国海上油气. 2018(04): 158-162 .
    18. 何淼,柳贡慧,李军,李梦博,查春青,李根. 多相流全瞬态温度压力场耦合模型求解及分析. 石油钻探技术. 2015(02): 25-32 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (3216) PDF downloads (3683) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return