XIONG Junjie. Gel breaking mechanism of guar gum fracturing fluid by biological enzyme and ammonium persulfate [J]. Petroleum Drilling Techniques, 2024, 52(6):126−130. DOI: 10.11911/syztjs.2024071
Citation: XIONG Junjie. Gel breaking mechanism of guar gum fracturing fluid by biological enzyme and ammonium persulfate [J]. Petroleum Drilling Techniques, 2024, 52(6):126−130. DOI: 10.11911/syztjs.2024071

Gel Breaking Mechanism of Guar Gum Fracturing Fluid by Biological Enzyme and Ammonium Persulfate

More Information
  • Received Date: December 09, 2022
  • Revised Date: July 04, 2024
  • Available Online: July 17, 2024
  • To effectively alleviate the damage of residues produced by broken guar gum fracturing fluid to the formation, the gel breaking mechanism of biological enzyme and ammonium persulfate/biological enzyme composite gel breakers on the guar gum fracturing fluid was investigated by analyzing the molecular physical and chemical properties of the gel breaking solution of guar gum fracturing fluid under different gel breaking methods. The results show that compared with ammonium persulfate gel breakers, biological enzyme and ammonium persulfate/biological enzyme composite gel breakers can effectively reduce the relative molecular weight and molecular size of gel breaking solution. The degradation products in the gel breaking solution are mainly disaccharide to pentasaccharide. The analysis of gel breaking solution residues shows that the content ratio of mannose to galactose in residue molecules is only 0.38, which is the main reason for its poor water solubility and the existence of residues in the gel breaking solution. In addition, through the simulation test, it is found that acid injection can effectively degrade the gel breaking solution residues of guar gum fracturing fluid and improve the proppant conductivity. The results can provide a theoretical basis for selecting gel breakers and reducing damage caused by gel breaking solution residues.

  • [1]
    陈大钧,陈馥. 油气田应用化学[M]. 北京:石油工业出版社,2006:99-100.

    CHEN Dajun, CHEN Fu. Applied chemistry of oil and gas fie-lds[M]. Beijing: Petroleum Industry Press, 2006: 99-100.
    [2]
    李刚,铁忠银. HZY-1、HZY-2低温破胶压裂液的研究及应用[J]. 石油钻探技术,1998,26(1):46–48.

    LI Gang, TIE Zhongyin. Development and application of HZY-1, HZY-2 low temperature fracturing fluid for gel breaking[J]. Petroleum Drilling Techniques, 1998, 26(1): 46–48.
    [3]
    余翠沛,张滨海,李紫晗,等. 临兴区块致密气储层压裂损害影响因素[J]. 特种油气藏,2022,29(1):141–146. doi: 10.3969/j.issn.1006-6535.2022.01.021

    YU Cuipei, ZHANG Binhai, LI Zihan, et al. On factors influencing fracture damage in tight gas reservoirs, Linxing Block[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 141–146. doi: 10.3969/j.issn.1006-6535.2022.01.021
    [4]
    刘立宏,王娟娟,高春华. 多元改性速溶胍胶压裂液研究与应用[J]. 石油钻探技术,2015,43(3):116–119.

    LIU Lihong, WANG Juanjuan, GAO Chunhua. Research and application of a multicomponent modified instant guar fracturing fluid[J]. Petroleum Drilling Techniques, 2015, 43(3): 116–119.
    [5]
    WEAVER J, SCHMELZL E, JAMIESON M, et al. New fluid technology allows fracturing without internal breakers[R]. SPE 75690, 2002.
    [6]
    王红科,刘音,何武,等. 高温水配制压裂液技术研究与现场应用[J]. 钻井液与完井液,2020,37(3):384–388. doi: 10.3969/j.issn.1001-5620.2020.03.020

    WANG Hongke, LIU Yin, HE Wu, et al. Preparation of fracturing fluids with hot water[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 384–388. doi: 10.3969/j.issn.1001-5620.2020.03.020
    [7]
    刘平礼,张璐,邢希金,等. 瓜胶压裂液对储层的伤害特性[J]. 油田化学,2014,31(3):334–338.

    LIU Pingli, ZHANG Lu, XING Xijin, et al. Characteristics of formation damage by Guar-Gum fracturing fluids[J]. Oilfield Chemistry, 2014, 31(3): 334–338.
    [8]
    乔东宇,郑义平,冉照辉,等. 低伤害压裂液在苏里格气田的应用[J]. 钻井液与完井液,2012,29(2):71–72. doi: 10.3969/j.issn.1001-5620.2012.02.023

    QIAO Dongyu, ZHENG Yiping, RAN Zhaohui, et al. Application of low-damage fracturing fluid system in Block Su77 of Sulige Gas Field[J]. Drilling Fluid & Completion Fluid, 2012, 29(2): 71–72. doi: 10.3969/j.issn.1001-5620.2012.02.023
    [9]
    乔红军,马春晓,高志亮,等. 适用于低渗透储层的有机硼胍胶压裂液体系的制备与性能评价[J]. 油田化学,2020,37(2):204–207.

    QIAO Hongjun, MA Chunxiao, GAO Zhiliang, et al. Preparation and performance evaluation of organic boron guanidine gum fracturing fluid for the low permeability reservoir[J]. Oilfield Chemistry, 2020, 37(2): 204–207.
    [10]
    刘合,肖丹凤. 新型低损害植物胶压裂液及其在低渗透储层中的应用[J]. 石油学报,2008,29(6):880–884. doi: 10.3321/j.issn:0253-2697.2008.06.017

    LIU He, XIAO Danfeng. A novel low-damage vegetable gum-based fracturing fluid and its application in low-permeability reservoirs[J]. Acta Petrolei Sinica, 2008, 29(6): 880–884. doi: 10.3321/j.issn:0253-2697.2008.06.017
    [11]
    管保山,丛连铸,丁里,等. 延迟破胶及强制裂缝闭合技术的研究及应用[J]. 钻井液与完井液,2006,23(4):62–64. doi: 10.3969/j.issn.1001-5620.2006.04.019

    GUAN Baoshan, CONG Lianzhu, DING Li, et al. Research and application of delayed break and forced fracture closure technology[J]. Drilling Fluid & Completion Fluid, 2006, 23(4): 62–64. doi: 10.3969/j.issn.1001-5620.2006.04.019
    [12]
    WEAVER J, PARKER M, SLABAUGH B, et al. Application of new viscoelastic fluid technology results in enhanced fracture productivity[R]. SPE 71662, 2001.
    [13]
    VONEIFF G W, ROBINSON B M, HOLDITCH S A. The effects of unbroken fracture fluid on gas well performance[R]. SPE 26664, 1993.
    [14]
    李建山,陆红军,王平,等. 生物酶破胶剂在气井压裂中的研究与应用[J]. 钻井液与完井液,2012,29(6):71–73. doi: 10.3969/j.issn.1001-5620.2012.06.022

    LI Jianshan, LU Hongjun, WANG Ping, et al. Research and application on enzyme breaker of fracturing in gas well[J]. Drilling Fluid & Completion Fluid, 2012, 29(6): 71–73. doi: 10.3969/j.issn.1001-5620.2012.06.022
    [15]
    徐晓峰,郭旭跃,胡佩. 新型压裂液低温破胶体系的研制[J]. 特种油气藏,2004,11(6):89–91. doi: 10.3969/j.issn.1006-6535.2004.06.029

    XU Xiaofeng, GUO Xuyue, HU Pei. Development of a new low temperature breaking system of fracture fluid[J]. Special Oil & Gas Reservoirs, 2004, 11(6): 89–91. doi: 10.3969/j.issn.1006-6535.2004.06.029
    [16]
    MUDGIL D, BARAK S, KHATKAR B S. Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum[J]. Carbohydrate Polymers, 2012, 90(1): 224–228. doi: 10.1016/j.carbpol.2012.04.070
    [17]
    LI Dandan, YANG Na, ZHANG Yao, et al. Structural and physicochemical changes in guar gum by alcohol-acid treatment[J]. Carbohydrate Polymers, 2018, 179: 2–9. doi: 10.1016/j.carbpol.2017.09.057
    [18]
    SY/T 7627—2021 水基压裂液技术要求[S].

    SY/T 7627—2021 Technical requirements of water-based fracturing fuid[S].
    [19]
    周建平,杨战伟,徐敏杰,等. 工业氯化钙加重胍胶压裂液体系研究与现场试验[J]. 石油钻探技术,2021,49(2):96–101. doi: 10.11911/syztjs.2021014

    ZHOU Jianping, YANG Zhanwei, XU Minjie, et al. Research and field tests of weighted fracturing fluids with industrial calcium chloride and guar gum[J]. Petroleum Drilling Techniques, 2021, 49(2): 96–101. doi: 10.11911/syztjs.2021014
    [20]
    CHENG Yu, BROWN K M, PRUD’HOMME R K. Characterization and intermolecular interactions of hydroxypropyl guar solutions[J]. Biomacromolecules, 2002, 3(3): 456–461. doi: 10.1021/bm0156227
    [21]
    BURKE M D, PARK J O, SRINIVASARAO M, et al. Diffusion of macromolecules in polymer solutions and gels: a laser scanning confocal microscopy study[J]. Macromolecules, 2000, 33(20): 7500–7507. doi: 10.1021/ma000786l
  • Cited by

    Periodical cited type(1)

    1. 陈力力,马勇,付强,陈敏,付志,汪瑶,冯予淇,刘强,杨万忠,邹祥富,严海兵. 超大尺寸井眼固井关键技术探索与实践——以SDCK1万米特深井为例. 天然气工业. 2025(05): 113-123 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (144) PDF downloads (66) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return