ZHAO Guangyu. Study of a Simulation of Degree of Fracturing Production and Resulting Gas Flow in Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(4): 96-103. DOI: 10.11911/syztjs.2018058
Citation: ZHAO Guangyu. Study of a Simulation of Degree of Fracturing Production and Resulting Gas Flow in Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(4): 96-103. DOI: 10.11911/syztjs.2018058

Study of a Simulation of Degree of Fracturing Production and Resulting Gas Flow in Shale Gas Reservoirs

More Information
  • Received Date: October 11, 2017
  • Due to small pore throats and low permeability of shale reservoirs,primary natural fractures and induced fracture networks hydraulic fracturing can dramatically aggravate the complexity of shale gas flow.We needed to accurately characterize the pseudo-steady seepage characteristics of shale gas.To do so,we proposed a mathematical characterization method using discrete fractures coupled with a multiple continuous media system.Taking into consideration the distribution of reservoir fractures,the commercial numerical simulator was used to establish the discrete fractures and to couple them with multiple continuous media took into consideration adsorption/desorption for shale gas reservoirs.The mathematical model incorporated a local grid encryption method to describe the discrete fracture network.Based on the established multi-continuum system mathematical method,it was possible to model induced fractures within the natural fractures,including densely distributed micro-crack system that formed after fracturing.By using the established model,it was possible to systematically analyze the effects of fracture parameters,such as lateral/longitudinal mobilization of reservoirs,fracture conductivity,fracture half-length,and fracture arrangement on shale gas drainage area and gas well productivity.Studies revealed that increasing the reservoir stimulation volume could significantly increase shale gas production per well.Above all,the configuration relationship between the main fracture and the secondary fracture network should not be ignored.The model demonstrated that under the same reservoir stimulation volume,the connectivity between the fracture and wellbore was a necessary condition for increasing shale gas production,and it should be maximized.Studies suggested that the new modeling technique is effective and that it can be used as a guide when designing shale gas fracturing stimulation.
  • [1]
    KANG S M,FATHI E,AMBROSE R J,et al.Carbon dioxide storage capacity of organic-rich shales[J].SPE Journal,2011,16(4):842-855.
    [2]
    YAN Bicheng,WANG Yuhe,KILLOUGH J E.Beyond dual-porosity modeling for the simulation of complex flow mechanisms in shale reservoirs[J].Computational Geosciences,2016,20(1):69-91.
    [3]
    WASAKI A,AKKUTLU I Y.Permeability of organic-rich shale[J].SPE Journal,2015,20(6):1384-1396.
    [4]
    戴金星,吴伟,房忱琛,等.2000年以来中国大气田勘探开发特征[J].天然气工业,2015,35(1):1-9. DAI Jinxing,WU Wei,FANG Chenchen,et al.Exploration and development of large gas fields in China since 2000[J].Natural Gas Industry,2015,35(1):1-9.
    [5]
    钱斌,张俊成,朱炬辉,等.四川盆地长宁地区页岩气水平井组"拉链式"压裂实践[J].天然气工业,2015,35(1):81-84. QIAN Bin,ZHANG Juncheng,ZHU Juhui,et al.Application of zipper fracturing of horizontal cluster wells in the Changning shale gas pilot zone,Sichuan Basin[J].Natural Gas Industry,2015,35(1):81-84.
    [6]
    LANGE T,SAUTER M,HEITFELD M,et al.Hydraulic fracturing in unconventional gas reservoirs:risks in the geological system part 1[J].Environmental Earth Sciences,2013,70(8):3839-3853.
    [7]
    LOUCKS R G,REED R M,RUPPEL S C,et al.Morphology,Genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
    [8]
    YUAN Bin,SU Yuliang,MOGHANLOO R G,et al.A new analytical multi-linear solution for gas flow toward fractured horizontal wells with different fracture intensity[J].Journal of Natural Gas Science and Engineering,2015,23:227-238.
    [9]
    WANG Wendong,SHAHVALI M,SU Yuliang.A semi-analytical fractal model for production from tight oil reservoirs with hydraulically fractured horizontal wells[J].Fuel,2015,158:612-618.
    [10]
    WANG Wendong,SU Yuliang,SHENG Guanglong,et al.A mathematical model considering complex fractures and fractal flow for pressure transient analysis of fractured horizontal wells in unconventional oil reservoirs[J].Journal of Natural Gas Science Engineering,2015,23:139-147.
    [11]
    YUAN Bin,MOGHANLOO G R,SHARIFF E,et al.Integrated investigation of dynamic drainage volume (DDV) and inflow performance relationship (transient IPR) to optimize multi-stage fractured horizontal wells in shale oil[J].Journal of Energy Resource Technology,2016,138(5):052901-1-052901-9.
    [12]
    孙海,姚军,孙致学,等.页岩气数值模拟技术进展及展望[J].油气地质与采收率,2012,19(1):46-49. SUN Hai,YAO Jun,SUN Zhixue,et al.Recent development and prospect on numerical simulation of shale gas reservoirs[J].Petroleum Geology and Recovery Efficiency,2012,19(1):46-49.
    [13]
    陈晓明,李建忠,郑民,等.干酪根溶解理论及其在页岩气评价中的应用探索[J].天然气地球科学,2012,23(1):14-18. CHEN Xiaoming,LI Jianzhong,ZHENG Min,et al.Kerogen solution the oryand its exploratory applicationin shale gas assessment[J].Natural Gas Geoscience,2012,23(1):14-18.
    [14]
    JAVADPOUR F,FISHER D,UNSWORTH M.Nanoscale gas flow in shale gas sediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-61.
    [15]
    赵金洲,李志强,胡永全,等.考虑页岩储层微观渗流的压裂产能数值模拟[J].天然气工业,2015,35(6):53-58. ZHAO Jinzhou,LI Zhiqiang,HU Yongquan,et al.Numerical simulation of productivity after fracturing with consideration to micro-seepage in shale reservoirs[J].Natural Gas Industry,2015,35(6):53-58.
    [16]
    FREEMAN C M,MORIDIS G J,BLASINGAME T A.A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems[J].Transport in Porous Media,2011,90(1):253-268.
    [17]
    高树生,于兴河,刘华勋.滑脱效应对页岩气井产能影响的分析[J].天然气工业,2011, 31(4):55-58. GAO Shusheng,YU Xinghe,LIU Huaxun.Impact of slippage effect on shale gas well productivity[J].Natural Gas Industry,2011,31(4):55-58.
    [18]
    BESKOK A,KARNIADAKIS G E.A model for flows in channels,pipes,and ducts at micro and nano scales[J].Microscale Thermophysical Engineering,1999,3(1):43-77.
    [19]
    陈守雨,刘建伟,龚万兴,等.裂缝性储层缝网压裂技术研究及应用[J].石油钻采工艺,2010,32(6):67-71. CHEN Shouyu,LIU Jianwei,GONG Wanxing,et al.Study and application on network fracturing technology in fractured reservoir[J].Oil Drilling Production Technology,2010,32(6):67-71.
    [20]
    王文东,赵广渊,苏玉亮,等.致密油藏体积压裂技术应用[J].新疆石油地质,2013,34(3):345-348. WANG Wendong,ZHAO Guangyuan,SU Yuliang,et al.Application of network fracturing technology to tight oil reservoirs[J].Xinjiang Petroleum Geology,2013,34(3):345-348.
    [21]
    雷群,胥云,蒋廷学,等.用于提高低-特低渗透油气藏改造效果的缝网压裂技术[J].石油学报,2009,30(2):237-241. LEI Qun,XU Yun,JIANG Tingxue,et al."Fracture network" fracturing technique for improving post-fracturing performance of low and ultra-low permeability reservoirs[J].Acta Petrolei Sinica,2009,30(2):237-241.
    [22]
    陈作,薛承瑾,蒋廷学,等.页岩气井体积压裂技术在我国的应用建议[J].天然气工业,2010,30(10):30-32. CHEN Zuo,XUE Chengjin,JIANG Tingxue,et al.Proposals for the application of fracturing by stimulated reservoir volume(SRV) in shale gas wells in China[J].Natural Gas Industry,2010,30(10):30-32.
    [23]
    WITHERSPOON P A,WANG J S Y,IWAI K,et al.Validity of cubic law for fluid flow in a deformable rock fracture[J].Water Resources Research,1980,16(6):1016-1024.
    [24]
    BLASKOVICH F,CAIN G M,SONIER F,et al.A multicomponent isothermal system for efficient reservoir simulation[R].SPE 11480,1983.
    [25]
    WARREN J E,ROOT P J.The behavior of naturally fractured reservoirs[R].SPE 426,1963.
    [26]
    LAMPE V.Modelling fluid flow and heat transport in fractured porous media[D].Bergen:University of Bergen,2013.
    [27]
    HILL A C,THOMAS G W.A new approach for simulating complex fractured reservoirs[R].SPE 13537,1985.
    [28]
    HO C K.Dual porosity vs.dual permeability models of matrix diffusion in fractured rock:to be submitted to the International High-Level Radioactive Waste Conference,Lus Vegas,NV,April 29-May 3,2001[R].
    [29]
    姚军,王子胜,张允,等.天然裂缝性油藏的离散裂缝网络数值模拟方法[J].石油学报,2010,31(2):284-288. YAO Jun,WANG Zisheng,ZHANG Yun,et al.Numerical simulation method of discrete fracture network for naturally fractured reservoirs[J].Acta Petrolei Sinica,2010,31(2):284-288.
    [30]
    NOORISHAD J,MCHRAN M.An upstream finite element method for solution of transport equation in fractured porous media[J].Water Resources Research,1982,18(3):588-596.
    [31]
    BACA R G,ARNETT R C,LANGFORD D W.Modeling fluid-flow in fractured porous rock masses by finite-element techniques[J].International Journal for Numerical Methods in Fluids,1984,4(4):337-348.
    [32]
    CARLSON E S,MERCER J C.Devonian shale gas production:mechanisms and simple models[J].Journal of Petroleum Technology,1991,43(4):476-482.
    [33]
    DINGA D Y,WU Y S,JEANNIN L.Efficient simulation of hydraulic fractured wells in unconventionalreservoirs[J].Journal of Petroleum Science and Engineering,2014,122:631-642.
    [34]
    WANG Cong,WU Yushu.Modeling analysis of transient pressure and flow behavior at horizontal wells with multi-stage hydraulic fractures in shale gas reservoirs[R].SPE 168966,2014.
    [35]
    JIANG Jiamin,SHAO Yuanyuan,YOUNIS R M.Development of a multi-continuum multi-component model for enhanced gas recovery and CO2 storage in fractured shale gas reservoirs[R].SPE 169114,2014.
    [36]
    CIPOLLA C L,LOLON E,MAYERHOFER M J.Reservoir modeling and production evaluation in shale-gas reservoirs[R].IPTC 13185,2009.
  • Related Articles

    [1]CUI Zhuang, HOU Bing. A Numerical Simulation for Damage Mechanical Behavior of Brazilian Splitting Test of Deep Shales[J]. Petroleum Drilling Techniques, 2024, 52(2): 218-228. DOI: 10.11911/syztjs.2024032
    [2]XIAN Yuxi, CHEN Chaofeng, FENG Meng, HAO Youzhi. Numerical Simulation of Multiphase Flow in Fracture Networks in Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(5): 94-100. DOI: 10.11911/syztjs.2021090
    [3]YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
    [4]Chen Xiuping, Zou Deyong, Li Dongjie, Lou Erbiao. Numerical Simulation Study on the Anti-Balling Performance of PDC Drill Bits[J]. Petroleum Drilling Techniques, 2015, 43(6): 108-113. DOI: 10.11911/syztjs.201506020
    [5]Song Xianzhi, Li Gensheng, Wang Mengshu, Yi Can, Su Xinliang. Numerical Simulation on Cuttings Carrying Regularity for Horizontal Wells Drilled with Coiled Tubing[J]. Petroleum Drilling Techniques, 2014, 42(2): 28-32. DOI: 10.3969/j.issn.1001-0890.2014.02.006
    [6]Nie Xiangrong, Yang Shenglai. Numerical Simulation of Cooling Damage to High Pour-Point Oil Reservoirs[J]. Petroleum Drilling Techniques, 2014, 42(1): 100-104. DOI: 10.3969/j.issn.1001-0890.2014.01.020
    [7]Zhao Xinxin, Wu Xuefeng, Gao Yonghai, Li Hao, Guo Yanli. Numerical Simulation of Temperature Distribution of Blowout Preventers in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 46-50. DOI: 10.3969/j.issn.1001-0890.2013.03.009
    [8]Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013
    [9]Li Hongqian. Numerical Simulation on the Annular Flow Induced by Spiral Casing Centralizer[J]. Petroleum Drilling Techniques, 2012, 40(2): 25-29. DOI: 10.3969/j.issn.1001-0890.2012.02.005
    [10]Li Chunying, Wu Xiaodong. Numerical Simulation of Remaining Oil Distribution in Cyclothem[J]. Petroleum Drilling Techniques, 2012, 40(1): 88-91. DOI: 10.3969/j.issn.1001-0890.2012.01.018
  • Cited by

    Periodical cited type(5)

    1. 滕先林. 四川威远地区页岩气藏储层纵向可动用程度分析. 中外能源. 2023(08): 52-57 .
    2. 张莉娜,任建华,胡春锋. 常压页岩气立体开发特征及缝网干扰规律研究. 石油钻探技术. 2023(05): 149-155 . 本站查看
    3. 岑涛,夏海帮,雷林. 渝东南常压页岩气压裂关键技术研究与应用. 油气藏评价与开发. 2020(05): 70-76 .
    4. 孙林,杨万有,李旭光,熊培祺. 海上油田爆燃压裂技术研究与现场试验. 石油钻探技术. 2019(05): 91-96 . 本站查看
    5. 王宏,赖枫鹏,张伟,陈野啸. 非均质低渗透气藏压裂直井产能计算. 断块油气田. 2019(06): 728-733 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (3864) PDF downloads (5539) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return