SUN Lin, YANG Wanyou, LI Xuguang, XIONG Peiqi. Research and Field Test of Deflagration Fracturing Technology in Offshore Oilfields[J]. Petroleum Drilling Techniques, 2019, 47(5): 91-96. DOI: 10.11911/syztjs.2019087
Citation: SUN Lin, YANG Wanyou, LI Xuguang, XIONG Peiqi. Research and Field Test of Deflagration Fracturing Technology in Offshore Oilfields[J]. Petroleum Drilling Techniques, 2019, 47(5): 91-96. DOI: 10.11911/syztjs.2019087

Research and Field Test of Deflagration Fracturing Technology in Offshore Oilfields

More Information
  • Received Date: November 04, 2018
  • Revised Date: September 01, 2019
  • Available Online: September 08, 2019
  • There are technical challenges in the safety and high-efficiency stimulation by blasting fracturing in offshore oilfields, and in response a high temperature, low firepower and low burning rate propellant has been developed, and in addition, we have established a deflagration fracturing simulation model. By utilizing safety string components and conducting safety calibration, a wellhead pressure relief method for the offshore oilfields has been formed. Through the enhanced software simulation and combined acidizing operation, it can improve the technical safety and enhance the stimulation effect, so as to form the deflagration fracturing technology for offshore oilfields. This technology has been tested in 8 wells in offshore oilfields. In those offshore fields, the peak pressure of the test well was 22.4–71.3 MPa. There was no safety problem in the string, and the average daily oil increment per well was up to 43.1 m3/d. The research showed that this deflagration fracturing technology had good adaptability in offshore oilfields, which is suitable for a variety of well conditions, with the advantages of safety control and high-efficiency stimulation technology in deflagration fracturing in offshore oilfield, it can improve the application safety and optimize the results from stimulation.

  • [1]
    路保平, 丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1): 1–9.

    LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
    [2]
    赵光宇. 页岩气藏压裂动用程度及气体流动模拟研究[J]. 石油钻探技术, 2018, 46(4): 96–103.

    ZHAO Guangyu. Study of a simulation of degree of fracturing production and resulting gas flow in shale gas reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(4): 96–103.
    [3]
    金军, 王冉. 超临界CO2注入与页岩气储层相互作用的研究进展[J]. 断块油气田, 2018, 25(3): 363–366.

    JIN Jun, WANG Ran. Research progress of supercritical CO2 injection and its interaction with shale gas reservoirs[J]. Fault-Block Oil & Gas Field, 2018, 25(3): 363–366.
    [4]
    秦发动, 吴晋军. 我院高能气体压裂技术十年发展综述[J]. 西安石油学院学报(自然科学版), 1997, 12(3): 14–17, 52.

    QIN Fadong, WU Jinjun. Development of high energy gas fracturing (HEGF) in the past ten years[J]. Journal of Xi’an Petroleum Institute(Natural Science Edition), 1997, 12(3): 14–17, 52.
    [5]
    刘发喜, 秦发动. 高能气体压裂施工工艺及其发展趋势[J]. 石油钻采工艺, 1993, 15(2): 63–69, 75.

    LIU Faxi, QING Fadong. Construction technology and development tendency of high energy gas fracturing technique[J]. Oil Drilling & Production Technology, 1993, 15(2): 63–69, 75.
    [6]
    蒲春生, 周少伟. 高能气体压裂最佳火药量理论计算[J]. 断块油气田, 2008, 15(1): 55–57.

    PU Chunsheng, ZHOU Shaowei. Effective range of gunpowder amount in high energy gas fracture[J]. Fault-Block Oil & Gas Field, 2008, 15(1): 55–57.
    [7]
    邵重斌, 樊学忠, 吴淑新. 高能气体压裂技术和油层物性关系的研究[J]. 火炸药学报, 2002, 25(2): 69–70, 13. doi: 10.3969/j.issn.1007-7812.2002.02.028

    SHAO Chongbin, FAN Xuezhong, WU Shuxin. Study on the relationship between the high energy gas-fracture and the physical properties of oil layer[J]. Chinese Journal of Explosives & Propellants, 2002, 25(2): 69–70, 13. doi: 10.3969/j.issn.1007-7812.2002.02.028
    [8]
    张发展, 高志光. 双级高能气体压裂技术及应用效果分析[J]. 钻采工艺, 2005, 28(5): 54–56. doi: 10.3969/j.issn.1006-768X.2005.05.017

    ZHANG Fazhan, GAO Zhiguang. Analysis of applied effects for two stage high energy gas fracturing[J]. Drilling & Production Technology, 2005, 28(5): 54–56. doi: 10.3969/j.issn.1006-768X.2005.05.017
    [9]
    孙林, 宋爱莉, 易飞, 等. 爆压酸化技术在中国海上低渗油田适应性分析[J]. 钻采工艺, 2016, 39(1): 60–62. doi: 10.3969/J.ISSN.1006-768X.2016.01.17

    SUN Lin, SONG Aili, YI Fei, et al. Analysis of deflagrate fracturing technology adaptability in China offshore low permeability of oilfield[J]. Drilling & Production Technology, 2016, 39(1): 60–62. doi: 10.3969/J.ISSN.1006-768X.2016.01.17
    [10]
    蒲春生, 秦文龙, 邹鸿江, 等. 高能气体压裂增产措施中一氧化碳气体生成机制[J]. 石油学报, 2006, 27(6): 100–102. doi: 10.3321/j.issn:0253-2697.2006.06.022

    PU Chunsheng, QIN Wenlong, ZOU Hongjiang, et al. Formation mechanism of carbon monoxide in high-energy gas fracturing[J]. Acta Petrolei Sinica, 2006, 27(6): 100–102. doi: 10.3321/j.issn:0253-2697.2006.06.022
    [11]
    秦文龙, 蒲春生, 肖曾利, 等. 高能气体压裂中CO气生成及井口聚散规律研究[J]. 油田化学, 2007, 24(2): 127–130, 142. doi: 10.3969/j.issn.1000-4092.2007.02.010

    QIN Wenlong, PU Chunsheng, XIAO Zengli, et al. Formation and accumulation/disappearance of carbon monoxide around wellhead in course of high energy gas fracturing[J]. Oilfield Chemistry, 2007, 24(2): 127–130, 142. doi: 10.3969/j.issn.1000-4092.2007.02.010
    [12]
    秦文龙, 蒲春生. 高能气体压裂中CO气体生成富集规律[J]. 石油钻采工艺, 2007, 29(3): 42–44. doi: 10.3969/j.issn.1000-7393.2007.03.013

    QIN Wenlong, PU Chunsheng. CO gas generation and accumulation laws in high-energy gas fracturing[J]. Oil Drilling & Production Technology, 2007, 29(3): 42–44. doi: 10.3969/j.issn.1000-7393.2007.03.013
    [13]
    吴飞鹏, 蒲春生, 陈德春, 等. 高能气体压裂合理装药量的设计与应用[J]. 石油钻探技术, 2009, 37(1): 80–22. doi: 10.3969/j.issn.1001-0890.2009.01.019

    WU Feipeng, PU Chunsheng, CHEN Dechun, et al. Design and application of a reasonable charge of high-energy gas fracturing[J]. Petroleum Drilling Techniques, 2009, 37(1): 80–22. doi: 10.3969/j.issn.1001-0890.2009.01.019
    [14]
    王爱华, 李璗, 赵锋洛, 等. 用高能气体压裂模型研究裂缝条数[J]. 断块油气田, 2000, 7(5): 56–59. doi: 10.3969/j.issn.1005-8907.2007.05.020

    WANG Aihua, LI Dang, ZHAO Fengluo, et al. The study of number of fractures using high energy gas fracturing model[J]. Fault-Block Oil & Gas Field, 2000, 7(5): 56–59. doi: 10.3969/j.issn.1005-8907.2007.05.020
    [15]
    吴晋军, 廖红伟, 张杰. 水平井液体药高能气体压裂技术试验应用研究[J]. 钻采工艺, 2007, 30(1): 51–53.

    WU Jinjun, LIAO Hongwei, ZHANG Jie. Study and application of liquid power high energy gas fracturing technology in horizontal well[J]. Drilling & Production Technology, 2007, 30(1): 51–53.
    [16]
    孙林, 黄波, 熊培祺. 爆燃压裂起裂模型常见问题分析与修正[J]. 中国海上油气, 2019, 31(1): 133–138.

    SUN Lin, HUANG Bo, XIONG Peiqi. Common problems analysis and correction of deflagration fracturing crack initiation model[J]. China Offshore Oil and Gas, 2019, 31(1): 133–138.
    [17]
    黄波, 熊培祺, 孙林. 海上砂岩油藏爆燃压裂数值模拟技术研究[J]. 中国科技论文, 2018, 13(11): 1317–1324.

    HUANG Bo, XIONG Peiqi, SUN Lin. Numerical simulation technology of deflagration fracturing in offshore sandstone reservoir[J]. China Sciencepaper, 2018, 13(11): 1317–1324.
    [18]
    孙林, 杨万有, 易飞, 等. 筛管完井爆燃压裂技术可行性研究[J]. 特种油气藏, 2017, 24(4): 161–165. doi: 10.3969/j.issn.1006-6535.2017.04.031

    SUN Lin, YANG Wanyou, YI Fei, et al. Feasibility research on liner-completion deflagration fracturing technique[J]. Special Oil & Gas Reservoirs, 2017, 24(4): 161–165. doi: 10.3969/j.issn.1006-6535.2017.04.031
    [19]
    张杰, 黄利平, 周际永, 等. 筛管完井高能气体压裂模拟实验研究[J]. 钻采工艺, 2018, 41(4): 66–68. doi: 10.3969/J.ISSN.1006-768X.2018.04.21

    ZHANG Jie, HUANG Liping, ZHOU Jiyong, et al. Simulation study on high energy gas fracturing in screen completed wells[J]. Drilling & Production Technology, 2018, 41(4): 66–68. doi: 10.3969/J.ISSN.1006-768X.2018.04.21
  • Cited by

    Periodical cited type(24)

    1. 王绪性,李湾湾,郭布民,徐延涛,袁文奎,曲喜墨,张雯. 渤海低渗油田压裂技术创新及应用. 广州化工. 2025(07): 182-184 .
    2. 易飞,孙林,杨军伟,张磊,李旭光. 多级水力冲击解堵技术研究及应用. 石油矿场机械. 2024(01): 72-78 .
    3. 孙林,易飞,任杨,汪洋,李少伟. 海上油田中深井多段优快爆燃压裂技术优化与应用. 中国海上油气. 2024(01): 125-133 .
    4. 刘成林,任杨,孙林,刘伟新,匡腊梅,张强,马喜超. 陆丰油田古近系低渗高温深层储层自源闭式强化注水技术研究与应用. 中国海上油气. 2024(02): 159-166 .
    5. 孙林,熊培祺,朱海涛,林伯韬,徐斌. 海上油田低渗储层岩石扩容低效原因及储层改造工艺. 中国海上油气. 2024(03): 151-158 .
    6. 孙林,徐斌,杨军伟,方培林,李晓亮. 水平筛管井不动管柱原位改造技术探索及实践. 石油机械. 2023(08): 85-92 .
    7. 李凡,曹卫东,孙玉华,陈康,江华,李少伟. 爆燃压裂技术在海上油田定向井多层合采中的应用. 断块油气田. 2022(02): 285-288 .
    8. 孙林,邹信波,李旭光,杨淼,杜克拯,曹鹏飞. 珠江口盆地惠州凹陷火山岩酸化可行性. 油气地质与采收率. 2022(02): 145-154 .
    9. 孙林,徐斌,邹信波,杨军伟,李旭光. 海上油田电泵生产井储层岩石扩容增产实践. 大庆石油地质与开发. 2022(01): 77-83 .
    10. 王绪性,郭布民,徐延涛,袁文奎,李湾湾. 海上过筛管压裂工艺研究及应用. 钻采工艺. 2022(02): 56-60 .
    11. 惠鑫,黄小峰,刘虎,马志峰. 低渗油田高压注水井在线酸化技术研究与试验. 化学与粘合. 2022(03): 224-228+237 .
    12. 孙林,张磊,李旭光,杨军伟,熊培祺. 水力冲击工具优化及井下试验. 石油钻探技术. 2022(05): 108-111 . 本站查看
    13. 鲁坤,王喜,李必红,秦辉,蒙春学,陈政. 油管输送爆燃压裂管柱安全性研究. 油气井测试. 2022(06): 45-48 .
    14. 孙林,李旭光,黄利平,夏光,杨淼. 渤海油田注水井延效酸化技术研究与应用. 石油钻探技术. 2021(02): 90-95 . 本站查看
    15. 孙林,杨万有,黄波,李旭光,熊培祺. 海上油田水力冲击压裂酸化技术研究与试验. 石油机械. 2021(06): 36-42 .
    16. 周际永,李旭光,孙林,熊培祺,杨军伟. 爆燃压裂技术在海上低效油井中的研究与应用. 石油工业技术监督. 2021(07): 38-41 .
    17. 张冕,池晓明,刘欢,夏玉磊,张文雪,李璐. 我国石油工程领域压裂酸化技术现状、未来趋势及促进对策. 中国石油大学学报(社会科学版). 2021(04): 25-30 .
    18. 孙林,邹信波,黄波,吴飞鹏,熊培祺. 爆燃压裂技术在筛管完井污染解堵中的应用. 中国海上油气. 2021(04): 143-148 .
    19. 范白涛,陈峥嵘,姜浒,吴怡,李斌,杨琦,李亮. 中国海油非常规和海上低渗储层压裂技术现状与展望. 中国海上油气. 2021(04): 112-119 .
    20. 邹信波,孙林,匡腊梅,刘成林,任杨. 爆燃压裂联合酸化技术在陆丰油田古近系储层的应用研究. 中国海上油气. 2021(04): 129-134 .
    21. 孙林,黄波,张杰,吴飞鹏,李旭光,熊培祺. 过筛管爆燃压裂技术. 特种油气藏. 2021(03): 162-167 .
    22. 李旭光,孙林,陈维余,熊培祺,杨淼. 水力冲击压裂技术地面打靶模拟实验研究. 钻采工艺. 2021(04): 39-42+56 .
    23. 孙林,黄波,易飞,张杰. 爆燃压裂技术对水泥试样致裂实验研究. 西南石油大学学报(自然科学版). 2020(05): 99-106 .
    24. 于法浩,李越,尚宝兵,陈征,刘国正. 爆燃压裂井井筒安全控制技术研究与应用. 能源与环保. 2020(12): 71-75 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (930) PDF downloads (71) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return