Citation: | KANG Zhengming, KE Shizhen, LI Xin, NI Weining, LI Fei. Probe into Quantitative Stratigraphic Interface Evaluation Using a Resistivity Imaging LWD Tool[J]. Petroleum Drilling Techniques, 2020, 48(4): 124-130. DOI: 10.11911/syztjs.2020087 |
Resistivity imaging LWD tool can not only visually display the characteristics of micro geological bodies through borehole wall electric imaging, but also can identify the formation interface. In order to explore the logging response mechanism of the tool at the interface, this paper studies the logging response law of the azimuthal resistivity imaging LWD tool at formation interface by using the three-dimensional finite element method. In doing so, it established a quantitative calculation model of formation interface parameters according to the simulation results. The results showed that the resistivity measurement difference of different azimuthal button electrodes of the tool exhibited a good power exponent relationship with the distance from tool to the formation interface in horizontal wells. The angle between the tool and formation interface and the maximum distance between resistivity curve spikes of different azimuthal button electrodes was power exponentially in deviated wells, which is not affected by resistivity contrast of the upper and lower strata at the formation interface. The model for the formation interface parameters interpretation indicated that the tool can be recognized within 1.00 m to the horizontal interface, and the angle can be calculated quantitatively when the angle between the tool and formation interface is less than 20 degrees. The research results can provide a theoretical basis for the application of a resistivity imaging LWD tool in geological engineering.
[1] |
路保平,丁士东,何龙,等. 低渗透油气藏高效开发钻完井技术研究主要进展[J]. 石油钻探技术, 2019, 47(1): 1–7. doi: 10.11911/syztjs.2019027
LU Baoping, DING Shidong, HE Long, et al. Key achievement of drilling & completion technologies for the efficient development of low permeability oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 1–7. doi: 10.11911/syztjs.2019027
|
[2] |
李安宗,李启明,朱军,等. 方位侧向电阻率成像随钻测井仪探测特性数值模拟分析[J]. 测井技术, 2014, 38(4): 407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006
LI Anzong, LI Qiming, ZHU Jun, et al. Numerical analysis of logging response for LWD azimuthal laterolog resistivity imaging tool[J]. Well Logging Technology, 2014, 38(4): 407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006
|
[3] |
路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060
LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060
|
[4] |
ALLOUCHE M, CHOW S, DUBOURG I, et al. High-resolution images and formation evaluation in slim holes from a new logging-while-drilling azimuthal laterolog device[R]. SPE 131513, 2010.
|
[5] |
VAN OS R, DION D, CHEUNG P. Device and method of measuring depth and azimuth: US7873475[P]. 2009-01-18.
|
[6] |
KOEPSELL R, SHIM Y H, KOK J C L, et al. Advanced LWD imaging technology in the Niobrara: case study[R]. SPE 143828, 2011.
|
[7] |
ORTENZI L, DUBOURG I, VAN OS R, et al. New azimuthal resistivity and high-resolution imager facilitates formation evaluation and well placement of horizontal slim boreholes[J]. Petrophysics, 2011, 53(3): 197–207.
|
[8] |
LV Zonggang, PENG Hairun, XIA Qin, et al. Uncovering the potential of thin, tight gas reservoirs in Sichuan Basin, China: new development campaign using new LWD imaging technology and innovative interpretation workflows[R]. SPE 160173, 2012.
|
[9] |
PRAMMER M G, MORYS M, KNIZHNIK S, et al. A high-resolution LWD resistivity imaging tool: field testing in vertical and highly deviated boreholes[J]. Petrophysics, 2009, 50(1): 49–66.
|
[10] |
KUMAR R, OTAIBI S F, MUMTAZ A, et al. Effective geosteering using high-resolution electrical images and deep azimuthal resistivity[R]. SPE 172179, 2014.
|
[11] |
FULDA C, HARTMANN A, GOREK M. High resolution electrical imaging while drilling[R]. SPWLA-2010-46830, 2010.
|
[12] |
RITTER R N, CHEMALI R, LOFTS J, et al. High resolution visualization of near wellbore geology using while-drilling electrical images[R]. SPWLA-2004-PP, 2004.
|
[13] |
康正明, 柯式镇, 李新, 等. 钻头电阻率测井仪器探测特性研究[J]. 石油科学通报, 2017, 2(4): 457–465.
KANG Zhengming, KE Shizhen, LI Xin, et al. The detection characteristics study of the at-bit resistivity logging tool[J]. Petroleum Science Bulletin, 2017, 2(4): 457–465.
|
[14] |
KANG Zhengming, KE Shizhen, LI Xin, et al. 3D FEM simulation of responses of LWD multi-mode resistivity imaging sonde[J]. Applied Geophysics, 2018, 15(3/4): 401–412.
|
[15] |
倪卫宁, 康正明, 路保平, 等. 随钻高分辨率电阻率成像仪器探测特性研究[J]. 石油钻探技术, 2019, 47(2): 114–119. doi: 10.11911/syztjs.2019005
NI Weining, KANG Zhengming, LU Baoping, et al. The detection characteristics of a high resolution resistivity imaging instrument while drilling[J]. Petroleum Drilling Techniques, 2019, 47(2): 114–119. doi: 10.11911/syztjs.2019005
|
[16] |
李铭宇, 柯式镇, 康正明, 等. 螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性[J]. 石油钻探技术, 2018, 46(1): 128–134.
LI Mingyu, KE Shizhen, KANG Zhengming, et al. Influence factors of measured signal intensity and the response characteristics of the toroidal coil excitation LWD laterolog instrument[J]. Petroleum Drilling Techniques, 2018, 46(1): 128–134.
|
[17] |
JING Jiankun, KANG Zhengming, KE Shizhen, et al. The imaging resolution effect of LWD resistivity imaging tool using numerical simulation method[R]. EAGE-We_P09_12, 2019.
|
[18] |
ARPS J J. Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem: US3305771[P]. 1967-02-21.
|
[19] |
GIANZERO S, CHEMALI R, LIN Y, et al. A new resistivity tool for measurement-while-drilling[R]. SPWLA-1985-A, 1985.
|
[20] |
刘国胜,杨海东,汤健超. 复杂地质层中电磁波测井响应特性的数值研究[J]. 中南大学学报(自然科学版), 2013, 44(2): 656–661.
LIU Guosheng, YANG Haidong, TANG Jianchao. Numerical investigation for responses of electrical logging-while-drilling in complex formations[J]. Journal of Central South University (Natural Science Edition), 2013, 44(2): 656–661.
|
[21] |
CHEN Jiefu. An efficient discontinuous Galerkin finite element method with nested domain decomposition for simulations of microresistivity imaging[J]. Journal of Applied Geophysics, 2015, 114: 116–122. doi: 10.1016/j.jappgeo.2015.01.006
|
1. |
曾义金,王敏生,光新军,王果,张洪宝,陈曾伟,段继男. 中国石化智能钻井技术进展与展望. 石油钻探技术. 2024(05): 1-9+171 .
![]() | |
2. |
张正玉,袁军,李阳兵. 高强度高温高压直推存储式测井系统在超深井的应用. 石油钻探技术. 2022(05): 117-124 .
![]() | |
3. |
李皋,黎洪志,简旭,王军,王松涛. 气体钻井超前探测震源工具设计及力学性能模拟研究. 石油钻探技术. 2022(06): 14-20 .
![]() | |
4. |
谢关宝. 混合偶极子远探测响应影响因素及探测特性分析. 石油钻探技术. 2022(06): 28-34 .
![]() |